Arylalkylamine N-acetyltransferase (AANAT) is the penultimate and key regulatory enzyme in the melatonin biosynthetic pathway. In chicken retina in vivo, AANAT is expressed in a circadian fashion, primarily in photoreceptor cells. AANAT activity is high at night in darkness, low during the daytime, and suppressed by light exposure at night. In the present study, we investigated the circadian and photic regulation of adenosine 3',5'-monophosphate (cAMP) in cultured retinal cells entrained to a daily light-dark (LD) cycle, as well as the role of Ca(2+) and cAMP in the regulation of AANAT activity. Similar to AANAT activity, cAMP levels fluctuate in a daily fashion, with high levels at night in darkness and low levels during the day in light. This daily fluctuation continued with reduced amplitude in constant (24 h/day) darkness (DD). These changes in cAMP appear to be causally related to control of AANAT activity. Adenylyl cyclase and protein kinase A inhibitors suppress the nocturnal increase of AANAT in DD, while 8Br-cAMP augments it. The nocturnal increase of AANAT activity also involves Ca(2+) influx, as it is inhibited by nitrendipine, an inhibitor of L-type voltage-gated channels, and augmented by Bay K 8644, a Ca(2+) channel agonist. The effect of Bay K 8644 was antagonized by the adenylyl cyclase inhibitor MDL 12330A, suggesting a link between Ca(2+) influx, cAMP formation, and AANAT activity in retinal cells. Light exposure at night, which rapidly suppresses AANAT activity, also suppressed cAMP levels. The effect of light on AANAT activity was reversed by Bay K 8644, 8Br-cAMP, and the proteasome inhibitor lactacystin. These results indicate a dynamic interplay of circadian oscillators and light in the regulation of cAMP levels and AANAT activity in photoreceptor cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2003.08.003 | DOI Listing |
Chem Biodivers
December 2024
Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India.
The fruit and other parts of Momordica cymbalaria are known to have medicinal properties. The study investigates the chemical composition and functional groups of M. cymbalaria fruits to assess the insecticidal potential of its bioactive metabolites.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2024
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 69949, USA. Electronic address:
Arylalkylamine N-acetyltransferase (AANAT) catalyzes the rate-limiting step in melatonin synthesis and is a potential target for disorders involving melatonin overproduction, such as seasonal affective disorder. Previously described AANAT inhibitor bromoacetyltryptamine (BAT) and benzothiophenes analogs were reported to react with CoASH to form potent bisubstrate inhibitors through AANAT's alkyltransferase function, which is secondary to its role as an acetyltransferase. We replaced the bromoacetyl group in BAT with various Michael acceptors to mitigate possible off-target activity of its bromoacetyl group.
View Article and Find Full Text PDFNeuropeptides
December 2024
Medical Biotechnologist, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
There is an interplay between the gonadotropin-releasing hormone (GnRH) and melatoninergic systems. The key enzyme of melatonin synthesis (arylalkylamine N-acetyltransferase, AANAT), and GnRH receptors are expressed in the hippocampus. While it has been shown that hippocampal AANAT enzyme activity is necessary for proper hippocampal cognitive function, their role in long-term potentiation (LTP) induction is not fully understood.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
November 2024
Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712 Sopot, Poland. Electronic address:
The classic melatonin biosynthesis pathway (Mel; N-acetyl-5-methoxytryptamine) involves two consecutive enzymatic steps that are decisive in hormone production: conversion of serotonin (5-hydroxytryptamine; 5-HT) to N-acetylserotonin (NAS) and the methylation of the last compound to Mel. This pathway requires the activity of the enzymes: the first is of the category of N-acetyltransferases (AANAT, SNAT, or NAT) and the second is N-acetylserotonin O-methyltransferase (ASMT; also known as HIOMT). However, quite recently, new information has been provided on the possibility of an alternative Mel synthesis pathway; it would include a two-step action by these enzymes, but in reverse order, where ASMT (or ASMTL, the enzyme related to ASMT) methylates 5-HT to 5-methoxytryptamine (5-MT), and then the last compound is acetylated by an enzyme of the category of N-acetyltransferases to Mel.
View Article and Find Full Text PDFGeorgian Med News
May 2024
Department of Chemistry, College of Science, University of Mosul, Iraq.
Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme that repairs the oxidation of methionine residues in proteins and free methionine in autism spectrum disorder (ASD). The present study aimed to assess the level of MsrA and neurotransmission enzymes in ASD individuals. Results confirmed that ASD associated with significant (P<0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!