The safety and effectiveness of a Vero cell-derived inactivated Japanese encephalitis (JE) vaccine were compared with those of a current JE vaccine in non-clinical studies and a phase I clinical trial. The single-dose toxicity study showed no toxicity of either the current JE vaccine or the investigational Vero cell-derived JE vaccine. In a local irritation study, the degree of irritation caused by both vaccines was determined to be the same as that induced by normal saline. To investigate genotoxicity, a chromosomal aberration test was conducted and the results were negative. Both JE vaccines were administered to a group of 30 subjects who were seronegative (neutralizing antibody titer <10(1)) for JEV virus (Beijing-1 Strain). Each subject was subcutaneously inoculated twice at an interval of 1-4 weeks, followed by an additional booster inoculation 4-8 weeks later, and clinical reactions and serological responses were subsequently investigated. Adverse drug reactions of local reaction, headache and malaise were mild, occurring at a rate of 6.7 and 20.0% after administration of the Vero cell-derived JE vaccine and the current JE vaccine, respectively. The seroconversion rate after three doses of both JE vaccines was 100%, while the geometric mean titer for the Vero cell-derived and current JE vaccines was 10(2.35) and 10(2.03), respectively. These results suggest that the safety and effectiveness of the Vero cell-derived inactivated JE vaccine are equal to those of the currently available conventional vaccine in humans, and that the Vero cell-derived vaccine could be a useful second-generation JE vaccine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0264-410x(03)00506-1DOI Listing

Publication Analysis

Top Keywords

vero cell-derived
12
phase clinical
8
cell-derived inactivated
8
inactivated japanese
8
japanese encephalitis
8
encephalitis vaccine
8
current vaccine
8
vaccine
5
non-clinical phase
4
clinical trials
4

Similar Publications

An accumulated mutation gained in mosquito cells enhances Zika virus virulence and fitness in mice.

J Virol

November 2024

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.

Unlabelled: Zika virus (ZIKV) remains a significant public health threat worldwide. A number of adaptive mutations have accumulated within the genome of ZIKV during global transmission, some of which have been linked to specific phenotypes. ZIKV maintains an alternating cycle of replication between mosquitoes and vertebrate hosts, but the role of mosquito-specific adaptive mutations in ZIKV has not been well investigated.

View Article and Find Full Text PDF

Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have shown anti-inflammatory potential in multiple inflammatory diseases. In the March 2022 issue of the Journal of Extracellular Vesicles, it was shown that EVs from human MSCs can suppress severe acute respiratory distress syndrome, coronavirus 2 (SARS-CoV-2) replication and can mitigate the production and release of infectious virions. We therefore hypothesized that MSC-EVs have an anti-viral effect in SARS-CoV-2 infection in vivo.

View Article and Find Full Text PDF

Anti-SARS-CoV-2 gapmer antisense oligonucleotides targeting the main protease region of viral RNA.

Antiviral Res

October 2024

Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan; Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan; Department of Applied Biological Sciences, Tokyo University of Science, Noda, 278-8510, Japan; MIRAI, JST, Tokyo, 102-0076, Japan. Electronic address:

Article Synopsis
  • Emerging respiratory viruses like SARS-CoV-2 pose a global risk, prompting the need for new antiviral strategies, particularly through the use of gapmer antisense oligonucleotides (ASOs).
  • Researchers synthesized about 300 ASOs targeting different regions of the SARS-CoV-2 RNA and effectively identified ASO#41, which inhibited viral replication and reduced infection-related cell damage.
  • ASO#41 demonstrated strong antiviral activity against multiple variants of SARS-CoV-2 in lab models and showed promise in mice, indicating its potential as a targeted treatment approach for respiratory viruses.
View Article and Find Full Text PDF

Suppression of HSV-1 infection and viral reactivation by CRISPR-Cas9 gene editing in 2D and 3D culture models.

Mol Ther Nucleic Acids

September 2024

Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.

Although our understanding of herpes simplex virus type 1 (HSV-1) biology has been considerably enhanced, developing therapeutic strategies to eliminate HSV-1 in latently infected individuals remains a public health concern. Current antiviral drugs used for the treatment of HSV-1 complications are not specific and do not address latent infection. We recently developed a CRISPR-Cas9-based gene editing platform to specifically target the HSV-1 genome.

View Article and Find Full Text PDF

This study was to evaluate the sufficient safety and effect of the novel influenza vaccine program. It prepared new reassortant influenza virus, with high yield on Vero cells. According to the plaque counting, one dose LAIV was composed with 10 PFU of H1, H3, BY, and BV, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!