Does tumor growth follow a "universal law"?

J Theor Biol

Dip. Neuroscience, Universita di Torino, C. Raffaello 30, 10125, Torino, Italy.

Published: November 2003

A general model for the ontogenetic growth of living organisms has been recently proposed. Here we investigate the extension of this model to the growth of solid malignant tumors. A variety of in vitro and in vivo data are analysed and compared with the prediction of a "universal" law, relating properly rescaled tumor masses and tumor growth times. The results support the notion that tumor growth follows such a universal law. Several important implications of this finding are discussed, including its relevance for tumor metastasis and recurrence, cell turnover rates, angiogenesis and invasion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-5193(03)00221-2DOI Listing

Publication Analysis

Top Keywords

tumor growth
12
tumor
5
growth follow
4
follow "universal
4
"universal law"?
4
law"? general
4
general model
4
model ontogenetic
4
growth
4
ontogenetic growth
4

Similar Publications

Background: Primary intracranial germ cell tumors (iGCTs) are highly malignant brain tumors that predominantly occur in children and adolescents, with an incidence rate ranking third among primary brain tumors in East Asia (8%-15%). Due to their insidious onset and impact on critical functional areas of the brain, these tumors often result in irreversible abnormalities in growth and development, as well as cognitive and motor impairments in affected children. Therefore, early diagnosis through advanced screening techniques is vital for improving patient outcomes and quality of life.

View Article and Find Full Text PDF

Purpose: To assess trial-level surrogacy value for overall survival (OS) of the pathologic complete response (pCR) and invasive disease-free survival (iDFS) in randomized clinical trials (RCTs) for early breast cancer (BC).

Methods: Individual patient data of neoadjuvant RCTs with available data on pCR, iDFS, and OS were included in the analysis. We used the coefficient of determination from weighted linear regression models to quantify the association between treatment effects on OS and on the surrogate end points.

View Article and Find Full Text PDF

Sonodynamic therapy, a treatment modality recently widely used, is capable of disrupting the tumor microenvironment by inducing immunogenic cell death (ICD) and enhancing antitumor immunity during immunotherapy. Erdafitinib, an inhibitor of the fibroblast growth factor receptor, has demonstrated potential benefits for treating bladder cancer. However, Erdafitinib shows effectiveness in only a small number of patients, and the majority of patients responding positively to the medication have "immune-cold" tumors.

View Article and Find Full Text PDF

CBX2 suppresses interferon signaling to diminish tumor immunogenicity via a noncanonical corepressor complex.

Proc Natl Acad Sci U S A

February 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.

Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.

View Article and Find Full Text PDF

Understanding how epithelial cells in the female reproductive tract (FRT) differentiate is crucial for reproductive health, yet the underlying mechanisms remain poorly defined. At birth, FRT epithelium is highly malleable, allowing differentiation into various epithelial types, but the regulatory pathways guiding these early cell fate decisions are unclear. Here, we use neonatal mouse endometrial organoids and assembloid coculture models to investigate how innate cellular plasticity and external mesenchymal signals influence epithelial differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!