Ochratoxin A (OTA), a metabolite produced by strains of Aspergillus and Penicillium, has nephritogenic, carcinogenic, and teratogenic activity in animals and humans. Nanomolar concentrations of OTA promote apoptosis in a cell-type specific fashion. In this study, we have analyzed the molecular mechanism by which OTA affects COS cell adhesion and signaling resulting in an apoptotic response. OTA, at noncytotoxic doses, was able to detach collagen- and fibronectin-adherent cells from immobilized substratum. However, prior to inducing detachment of adherent cells, OTA caused apoptosis as measured by caspase-3 activation. The treatment of adherent cells by OTA caused a reduction of tyrosine phosphorylation levels of FAK and of the adapter protein paxillin. The down-regulation of FAK preceded apoptosis and cell detachment induced by OTA. The mycotoxin was also able to cause a decrease of the phosphorylation levels of the two Shc isoforms, P66 and P52, in adherent cells. Since these Shc isoforms have been implicated in the activation of protein kinase c-Src, which is required for FAK tyrosine phosphorylation, the observed dephosphorylation of FAK and of the FAK substrate paxillin by OTA could be ascribed to the early down-regulation of Shc isoforms. However, whether FAK and Shc phosphorylation contribute both to the same pathway leading to the induction of apoptosis by OTA or are involved in two parallel signaling pathways remains to be investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0041-008x(03)00300-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!