Objective: To construct replication selective adenovirus AdhepE1 targeting human melanoma and observe its specific killing of human melanoma cells in vitro.
Methods: Adenovirus E1 region, the murine tyrosinase promoter and enhancer DNA sequences were acquired respectively by PCR cloning. The shuttle plasmid of replication-selective adenovirus targeting human melanoma was constructed by DNA recombination. Replication-selective adenovirus AdhepE1 was generated by homologous recombination. The human melanoma cell line SK-Mel-1 and hepatocellular carcinoma cell line HepG2 were attacked separately by lower dose of AdhepE1. Change of cell morphology was observed and the surviving cells were calculated. The expression of E1A was assayed by RT-PCR to verify the specific-replication of AdhepE1.
Results: Replication selective adenovirus AdhepE1 targeting human melanoma was acquired by PCR. Human melanoma cell line SK-Mel-1 was sensitive to oncolytic killing of AdhepE1 whereas HepG2 was little responsive. The results of RT-PCR suggested that AdhepE1 replicated specifically in human melanoma cells.
Conclusion: AdhepE1 can selectively kill human melanoma cells.
Download full-text PDF |
Source |
---|
Nat Commun
December 2024
Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers.
View Article and Find Full Text PDFNat Commun
December 2024
Division of Plastic Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
Secondary lymphedema is a common sequel of oncologic surgery and presents a global health burden still lacking pharmacological treatment. The infiltration of the lymphedematous extremities with CD4T cells influences lymphedema onset and emerges as a promising therapy target. Here, we show that the modulation of CD4FOXP3CD25regulatory T (T) cells upon anti-CTLA4 treatment protects against lymphedema development in patients with melanoma and in a mouse lymphedema model.
View Article and Find Full Text PDFcutaneous melanoma has often unpredictable lymphatic drainage patterns, especially at the level of the trunk, head and neck regions. Sentinel lymph node biopsy (SLNB) is an important prognostic tool that accurately assesses regional lymph node involvement and guides therapeutic decisions. Material and this prospective study involved 104 patients diagnosed with cutaneous melanoma who underwent SLNB using a radioactive tracer.
View Article and Find Full Text PDFFront Immunol
December 2024
Division of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States.
Background: The impact of steroid-sparing immunosuppressive agents (SSIAs) for immune-related adverse events (irAEs) on tumor outcome is not well-known. This systematic review evaluates tumor outcomes for corticosteroid (CS) monotherapy versus CS with SSIA (CS-SSIA) for irAE treatment with a focus on melanoma.
Methods: Search was conducted through 1/5/23 using PubMed, Embase, Cochrane CENTRAL, and Web of Science.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!