High-pathogenicity avian influenza (HPAI) viruses emerged from low-pathogenicity avian influenza (LPAI) viruses in Pennsylvania (1983-84), Mexico (1994-95), and Italy (1999-2000). Here we focus on the question of why the HPAI virus supersedes the LPAI virus, once it has appeared during the epidemic. To study this, we used an experimental model in chickens that enabled us to estimate the reproduction ratio (R0). Using this model, we determined the R0 of the A/Chicken/Pennsylvania/21525/83 (LPAI) and of the A/Chicken/Pennsylvania/1370/83 (HPAI). Comparing the R0 of both viruses, we concluded that the R0 of the HPAI virus is significantly higher than the R0 of the LPAI.

Download full-text PDF

Source
http://dx.doi.org/10.1637/0005-2086-47.s3.939DOI Listing

Publication Analysis

Top Keywords

avian influenza
12
hpai virus
8
transmission dynamics
4
dynamics low-
4
low- high-pathogenicity
4
high-pathogenicity a/chicken/pennsylvania/83
4
a/chicken/pennsylvania/83 avian
4
viruses
4
influenza viruses
4
viruses high-pathogenicity
4

Similar Publications

Larvae Meal (HILM) has been observed to enhance growth performance and immune function, yet the effects and mechanisms in geese remain less understood. Experiment I included 64 Sichuan White Geese to investigate the optimal additive amount of HILM in diet, and experiment II included 32 Sichuan White Geese to access serum immunoglobulin, spleen immune-related genes, intestinal morphology and gut microbiota at the optimal additive amount of HILM. The results showed that the addition of 1% HILM significantly increased the ADG of Sichuan White Geese ( < 0.

View Article and Find Full Text PDF

The COVID-19 pandemic highlighted the urgent need for effective surface disinfection solutions, which has led to the use of mobile robots equipped with ultraviolet (UVC) lamps as a promising technology. This study aims to optimize the navigation of differential mobile robots equipped with UVC lamps to ensure maximum efficiency in disinfecting complex environments. Bio-inspired metaheuristic algorithms such as the gazelle optimization algorithm, whale optimization algorithm, bat optimization algorithm, and particle swarm optimization are applied.

View Article and Find Full Text PDF

The host range of HPAIV H5N1 was recently expanded to include ruminants, particularly dairy cattle in the United States (US). Shortly after, human H5N1 infection was reported in a dairy worker in Texas following exposure to infected cattle. Herein, we rescued the cattle-origin influenza A/bovine/Texas/24-029328-02/2024(H5N1, rHPbTX) and A/Texas/37/2024(H5N1, rHPhTX) viruses, identified in dairy cattle and human, respectively, and their low pathogenic forms, rLPbTX and rLPhTX, with monobasic HA cleavage sites.

View Article and Find Full Text PDF

Evidence of an emerging triple-reassortant H3N3 avian influenza virus in China.

BMC Genomics

December 2024

The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China.

The H3 subtype of avian influenza virus (AIV) stands out as one of the most prevalent subtypes, posing a significant threat to public health. In this study, a novel triple-reassortant H3N3 AIV designated A/chicken/China/16/2023 (H3N3), was isolated from a sick chicken in northern China. The complete genome of the isolate was determined using next-generation sequencing, and the AIV-like particles were confirmed via transmission electron microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!