A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distinct regions of the slo subunit determine differential BKCa channel responses to ethanol. | LitMetric

Distinct regions of the slo subunit determine differential BKCa channel responses to ethanol.

Alcohol Clin Exp Res

Department of Pharmacology, Program in Neuroscience, and Center of Excellence in Cardiovascular Biology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.

Published: October 2003

Background: Ethanol at clinically relevant concentrations increases BKCa channel activity in dorsal root ganglia neurons, GH3 cells, and neurohypophysial terminals, leading to decreases in cell excitability and peptide release. In contrast, ethanol inhibits BKCa channels from aortic myocytes, which likely contributes to alcohol-induced aortic constriction. The mechanisms that determine differential BKCa channel responses to ethanol are unknown. We hypothesized that nonconserved regions in the BKCa channel-forming subunit (slo) are major contributors to the differential alcohol responses of different BKCa channel phenotypes.

Methods: We constructed chimeras by interchanging the core and the tail domains of two BKCa channel-forming subunits (mslo and bslo) that, after expression, differentially respond to ethanol (activation and inhibition, respectively), and studied ethanol action on these mbslo and bmslo chimeric channels using single-channel, patch-clamp techniques.

Results And Conclusion: Data from cell-free membranes patches demonstrate that the activity of channels that share a mslo-type core-linker (wt mslo and the mbslo chimera) is consistently and significantly potentiated by acute exposure to ethanol. Thus, a mslo tail is not necessary for ethanol potentiation of slo channels. In contrast, the activity of channels that share a bslo-type core-linker (wt bslo and the bmslo chimera) display heterogenous responses to ethanol: inhibition (in the majority of cases), refractoriness, or activation. Overall, our data indicate that the slo core-linker is a critical region likely contributing to the differential responses of BKCa channels to ethanol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2494946PMC
http://dx.doi.org/10.1097/01.ALC.0000094756.41638.5DDOI Listing

Publication Analysis

Top Keywords

bkca channel
16
responses ethanol
12
ethanol
10
determine differential
8
bkca
8
differential bkca
8
channel responses
8
bkca channels
8
bkca channel-forming
8
responses bkca
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!