Background: Many humans are first exposed to ethanol during adolescence, the time at which they are most likely to binge drink ethanol. Chronic intermittent ethanol (CIE) exposure produces ethanol tolerance in adolescent rodents. Recent studies suggested that adolescent animals administered CIE experienced increased cognitive impairment following an ethanol challenge. These studies further explore development of ethanol tolerance caused by CIE in adolescence, and whether CIE during adolescence leads to altered ethanol response in adulthood.

Methods: Beginning postnatal day (P) 30, adolescent rats were administered 5.0 g/kg ethanol or saline every 48 hours for 20 days. In experiment I, animals were tested for differential weight gain. In experiment II, loss of righting reflex (LORR) was observed after each injection, then at completion of pretreatment all animals were tested with 5.0 g/kg ethanol and LORR was observed. In experiment III, blood ethanol levels were observed and elimination rates calculated after the first and fifth pretreatments. All animals were tested with 5.0 g/kg at completion of pretreatment and elimination rates were recalculated. In experiment IV, animals were trained on the spatial version of the Morris Water Maze Task (MWMT) on non-treatment days. Following completion of pretreatment and training, animals were tested after receiving an ethanol (1.0, 1.5, or 2.0 g/kg), or saline. Tests for experiments II, III, and IV were repeated in the same animals following 12 ethanol-free days.

Results: Chronic intermittent ethanol exposure during adolescence caused differential weight gain (experiment I). Adolescent rats developed tolerance to ethanol-induced LORR (experiment II) and metabolic tolerance to ethanol (experiment III). This tolerance was seen after 12 ethanol-free days. CIE also attenuated ethanol-induced spatial memory deficits in the MWMT (experiment IV). This effect was not long-lasting.

Conclusions: Following CIE pretreatment during adolescence, tolerance developed to the hypnotic and cognitive impairing effects of ethanol, along with increased metabolic rate and decreased weight gain. These results further emphasize the ability of CIE to produce a variety of effects during adolescence, some having long-lasting consequences.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.ALC.0000090141.66526.22DOI Listing

Publication Analysis

Top Keywords

animals tested
16
ethanol
15
chronic intermittent
12
weight gain
12
completion pretreatment
12
ethanol adolescence
8
hypnotic cognitive
8
intermittent ethanol
8
ethanol tolerance
8
cie adolescence
8

Similar Publications

Background: Conventional post-stroke edema management strategies are limitedly successful as in multiple cases of hemorrhagic transformation is being reported. Clinically, acute-ischemic-stroke (AIS) intervention by endovascular mesenchymal stem cells (MSCs) have shown benefits by altering various signaling pathways. Our previous studies have reported that intra-arterial administration of 1*10 MSCs (IA-MSCs) were beneficial in alleviating post-stroke edema by modulating PKCδ/MMP9/AQP4 axis and helpful in preserving the integrity of blood-brain-barrier (BBB).

View Article and Find Full Text PDF

The beneficial impact of gut microbiota on human health has encouraged studies on factors modulating it. Among the different factors, diet plays a vital role in this area. Many studies on animals and humans have been concerned with the effects of fermented milk products on gut microbiota and how they relate to health benefits.

View Article and Find Full Text PDF

Biliary duct reconstruction is one of the most challenging parts of liver transplantation and accounts for 40%-60% of complications. While current stent-based devices on the market show promising results in reducing complications, they are manufactured from permanent synthetic materials and require a second reintervention for their removal. This exposes the patients to other potential complications and increases healthcare costs.

View Article and Find Full Text PDF

The Effect of Cryopreservation on the Bone Healing Capacity of Endothelial Progenitor Cells in a Bone Defect Model.

J Orthop Res

January 2025

Keenan Research Centre for Biomedical Science, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada.

Endothelial progenitor cells (EPCs) have proven to be a highly effective cell therapy for critical-sized bone defects. Cryopreservation can enable long-term storage of EPCs, allowing their immediate availability on demand. This study compares the therapeutic potential of EPCs before and after cryopreservation in a small animal critical-sized bone defect model.

View Article and Find Full Text PDF

Background: Pain assessment based on facial expressions has been described in foals.

Objectives: To extend previous pilot findings of the Equine Utrecht University Scale for Facial Assessment of Pain in Foals (EQUUS-FAP FOAL).

Study Design: Prospective blinded case-control study (known groups analysis).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!