Celiac disease is a permanent immune-mediated food intolerance triggered by ingestion of wheat gliadins in genetically susceptible individuals. It has been reported that tissue transglutaminase plays an important role in the onset of celiac disease by converting specific glutamine residues within gliadin fragments into glutamic acid residues. This process increases binding affinity of gliadin peptides to HLA-DQ2/DQ8 molecules, thus enhancing the immune response. The aim of the present study was to achieve a detailed structural characterization of modifications induced by transglutaminase on gliadin peptides. Therefore, structural analyses were carried out on a recombinant alpha-gliadin and on a panel of 26 synthetic peptides, overlapping the complete protein sequence. Modified glutamine residues were identified by means of advanced mass-spectrometric methodologies on the basis of MALDI-TOF-MS and tandem mass spectrometry. Results led to the identification of 19 of 94 glutamine residues present in the recombinant alpha-gliadin, which were converted into glutamic acid residues by a transglutaminase-mediated reaction. This allowed us to achieve a global view of the modifications induced by the enzyme on this protein. Furthermore, results gathered could likely be utilized as relevant information for a better understanding of processes leading to T-cell recognition of gliadin peptides involved in celiac disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2366954 | PMC |
http://dx.doi.org/10.1110/ps.03185903 | DOI Listing |
Viruses
April 2024
Department of Nutrition and Food Sciences, School of Veterinary Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Directed evolution is a pivotal strategy for new antibody discovery, which allowed the generation of high-affinity Fabs against gliadin from two antibody libraries in our previous studies. One of the libraries was exclusively derived from celiac patients' mRNA (immune library) while the other was obtained through a protein engineering approach (semi-immune library). Recent advances in high-throughput DNA sequencing techniques are revolutionizing research across genomics, epigenomics, and transcriptomics.
View Article and Find Full Text PDFFoods
April 2024
Department of Nutrition and Food Sciences, School of Veterinary Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain.
This study presents the development of a sandwich ELISA method for gluten detection in foods, using recombinant Fab antibody fragments against gliadin. The Fabs were chemically biotinylated and immobilized on streptavidin-coated plates as capture antibodies, while alkaline phosphatase-conjugated Fabs were used as detection antibodies. Four different gliadin-binding Fabs were tested and the Fab pair Fab8E-4 and Fab-C showed the best compatibility.
View Article and Find Full Text PDFInt Immunol
August 2024
Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
The long-term value of efficient antigen discovery includes gaining insights into the variety of potential cancer neoantigens, effective vaccines lacking adverse effects, and adaptive immune receptor (IR) targets for blocking adaptive IR-antigen interactions in autoimmunity. While the preceding goals have been partially addressed via big data approaches to HLA (human leukocyte antigen)-epitope binding, there has been little such progress in the big data setting for adaptive IR-epitope binding. This delay in progress for the latter is likely due to, among other things, the much more complicated adaptive IR repertoire in an individual compared to individual HLA alleles.
View Article and Find Full Text PDFTransl Res
October 2024
Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France. Electronic address:
Iran J Biotechnol
July 2023
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Celiac disease (CD) is a gluten-sensitive chronic autoimmune enteropathy. A strict life-long gluten-free diet is the only efficient and accepted treatment until now. However, maintaining a truly gluten-free status is both difficult and costly, often resulting in a social burden for the person.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!