This short review reports the latest insights into the structural organization of the enteric nervous system, with special emphasis on the intrinsic innervation of the intestinal tract of large omnivorous mammals such as the pig. Using various techniques, including lesion experiments, morphological and neurochemical features of distinct neuronal populations as well as the direction of the axonal processes within the different nerve networks could be revealed. Special attention was paid to the considerable species differences in this respect between large omnivorous animals and humans on the one hand and small laboratory animals on the other hand.

Download full-text PDF

Source

Publication Analysis

Top Keywords

enteric nervous
8
nervous system
8
system special
8
large omnivorous
8
functional morphology
4
morphology enteric
4
special reference
4
reference large
4
large mammals
4
mammals short
4

Similar Publications

Background: Transanal irrigation is a well-established minimally invasive therapy that addresses symptoms of both constipation and incontinence. The therapy has been extended from just neurogenic bowel dysfunction patients to those with disorders of brain-gut interaction and postsurgical conditions.

Aim: To summarized the literature on transanal irrigation and update the contraindication profile.

View Article and Find Full Text PDF

Aberrant Expressions of EDNRB and EDN3 in a Multifactorial Hirschsprung Disease.

Curr Pediatr Rev

January 2025

Pediatric Surgery Division, Department of Surgery/Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia.

Background: Hirschsprung disease (HSCR) is a multifactorial disorder due to the enteric nervous system (ENS) development failure. At least 35 genes have been responsible for HSCR, including EDNRB and EDN3. Here, we aimed to determine the EDRNB and EDN3 expressions effects in HSCR subjects.

View Article and Find Full Text PDF

Background And Purpose: Inflammatory bowel disease (IBD) patients display genetic polymorphisms in toll-like receptor 4 (TLR4) genes, contributing to dysregulate enteric nervous system (ENS) circuits with increased levels of 5-HT and alteration of the neuroimmune crosstalk. In this study, we investigated the impact of TLR4 signalling on mouse ENS dysfunction caused by dextran sulphate sodium (DSS)-induced ileitis.

Experimental Approach: Male C57BL/6J (wild-type [WT]) and TLR4 mice (10 ± 2 weeks old) received 2% DSS in drinking water for 5 days and then were switched to 3-day regular drinking water.

View Article and Find Full Text PDF

Background: Hirschsprung disease (HSCR) is a rare neurodevelopmental disorder caused by disrupted migration and proliferation of enteric neural crest cells during enteric nervous system development. Genetic studies suggest a complex etiology involving both rare and common variants, but the contribution of ultra-rare pathogenic variants (PAs) remains poorly understood.

Methods: We perform whole-exome sequencing (WES) on 301 HSCR probands and 109 family trios, employing advanced statistical methods and gene prioritization strategies to identify genes carrying and ultra-rare coding pathogenic variants.

View Article and Find Full Text PDF

Unlabelled: Stress affects gastrointestinal (GI) function causing dysmotility, especially in patients. GI motility is regulated by the enteric nervous system (ENS), suggesting that stress alters ENS biology to cause dysmotility. While stress increases glucocorticoid levels through the hypothalamus-pituitary-adrenal axis, how glucocorticoids affect GI motility is not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!