Collectively, man-made emissions of a few greenhouse gases may cause about the same amount of global warming as increasing carbon dioxide. Among the most potent of these non-CO2 greenhouse gases are the perfluorocarbons that have extraordinarily long atmospheric lifetimes of 10,000 to more than 50,000 yr. We report atmospheric concentrations over two decades, between 1978 and 1997, of the three most abundant perfluorocarbons--CF4, C2F6, and C3F8--and delineate the sources that account for the present abundances and trends. We show that C2F6 and C3F8 are present at only 2.9 and 0.2 pptv, respectively. CF4 is the most abundant perfluorocarbon at 74 pptv (in 1997) of which about 40 pptv are from natural emissions, 33 pptv from aluminum manufacturing, and 1 pptv from the semiconductor industry. The increasing trend of CF4 has slowed in recent years due to the major reductions in the emission rate per ton of aluminum produced. The effect of the falling emission factor is partially offset by increased production and increasing use by the semiconductor industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es030327a | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea. Electronic address:
Maximizing the sorption capacity of gaseous Hg by sulfur-functionalized biochar can lead to increased energy consumption and the production of secondary environmental pollutants such as greenhouse gases. This study evaluates the environmental impact of producing sulfurized biochar through a life cycle assessment (LCA), weighing these impacts against the benefits of enhanced Hg removal efficiencies. The biochar's Hg adsorption capacity, which ranges between 3 and 22 μg-Hg/g-biochar, is influenced by several factors: it increases with higher sulfur loading (0-15 %), higher O levels (0-21 %), and longer pyrolysis times (1-5 h).
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Environmental Management, Institute of Environmental Engineering, RUDN University, Miklukho-Maklaya Street, 117198, Moscow, Russia.
Globally, agricultural lands are among the top emitters of greenhouse gases (GHGs), responsible for over 20% of total greenhouse gas (GHG) emissions. Climatic conditions, an acute challenge in sub-Saharan Africa (SSA), where access to mitigation technologies remains limited, have heavily influenced these lands. This study explores GHG contributions from crop production and their devastating and deteriorating impacts on the economy and environment and proposes a sustainable solution.
View Article and Find Full Text PDFNanomicro Lett
January 2025
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States.
ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!