Photonic crystal optrode sensor for detection of Pb2+ in high ionic strength environments.

Anal Chem

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.

Published: August 2003

We developed an optrode sensing device that utilizes a polymerized colloidal array (PCCA) photonic crystal material. This array diffracts light in the visible spectral region due to the periodic spacing of colloidal particles. The PCCA changes diffraction wavelength due to binding of Pb2+ to an 18-crown-6 ether molecular recognition agent. This optrode consists of a probe assembly that contains the PCCA Pb2+ sensing film. An inexpensive, commercial diode array spectrometer and a fiber-optic reflectance probe monitors the wavelength of light back diffracted by the PCCA. Liquid inlet and outlet connections are provided to introduce the sample solution and to exchange out nonbinding ions. In low ionic strength solutions, diffraction wavelength shifts are actuated by the binding of the Pb2+ to the crown ether to immobilize the Pb2+ counterions. In these low ionic strength solutions, a Donnan potential forms to cause an osmotic pressure, which swells the PCCA in proportion to the number density of bound Pb2+. This Donnan potential disappears at high ionic strengths. Thus, no response of the PCCA occurs. Our optrode design allows for the fast removal of nonbound ions from the PCCA by washing with pure water. Since the bound Pb2+ ions have a slow off rate from the crown ether, the bound Pb2+ PCCA diffraction transiently red shifts during washing, directly in proportion to the sample Pb2+ concentration. This transient diffraction red-shift can be used to quantitatively determine Pb2+ concentrations in high ionic strength solutions such as bodily fluids.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac034276bDOI Listing

Publication Analysis

Top Keywords

ionic strength
16
high ionic
12
strength solutions
12
bound pb2+
12
pb2+
10
photonic crystal
8
pcca
8
diffraction wavelength
8
binding pb2+
8
low ionic
8

Similar Publications

The photopolymerization-induced microphase separation (photo-PIMS) process involving a reactive polymer block was implemented to fabricate nanostructured quasi-solid polymer electrolytes (QSPEs) for use in lithium metal batteries (LMBs). This innovative one-pot fabrication enhances interfacial properties in LMBs by enabling nanostructuring of QSPE directly onto the electrodes. This process also allows for customization of QSPE structural dimensions by tweaking the architecture and molar mass of poly[(oligo ethylene glycol) methyl ether methacrylate--styrene] (P(OEGMA--S)) macromolecular chain transfer agent.

View Article and Find Full Text PDF

Highly compressible lamellar graphene/cellulose/sodium alginate aerogel via bidirectional freeze-drying for flexible pressure sensor.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Graphene exhibits exceptional electrical properties, and aerogels made from it demonstrate high sensitivity when used in sensors. However, traditional graphene aerogels have poor biocompatibility and sustainability, posing potential environmental and health risks. Moreover, the stacking of their internal structures results in low compressive strength and fatigue resistance, which limits their further applications.

View Article and Find Full Text PDF

Encapsulation of astilbin in zein nanoparticles with fructo-oligosaccharides and caseinate as costabilizers: Formation, stability, bioavailability, and antioxidant capacity.

Int J Biol Macromol

January 2025

National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China. Electronic address:

Zein-based nanoparticles (NPs) have attracted considerable attention as potential delivery systems for bioactive compounds. However, their application has been limited by poor stability and redispersibility. In this study, we addressed these challenges by fabricating zein nanocarriers using branching structural fructo-oligosaccharides (P-FOS) and sodium caseinate (NaCas) as costabilizers.

View Article and Find Full Text PDF

Effect of the support alkyl chain nature in the functional properties of the immobilized lipases.

Enzyme Microb Technol

January 2025

Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, Madrid 28049, Spain. Electronic address:

Supports coated with amino-hexyl and amino octyl have been prepared from glyoxyl agarose beads and compared in their performance with octyl-agarose to immobilize lipases A and B from Candida antarctica (CALA and CALB). Immobilization courses were similar using all supports, but enzyme release was more difficult using the amino-alkyl supports suggesting a mixed interfacial activation/ionic exchange immobilization. The enzyme activity and specificity (using p-nitrophenyl propionate, triacetin and both isomers of methyl mandelate) greatly depended on the support.

View Article and Find Full Text PDF

Melatonin (MLT) is an indole derivative that exhibits hormone-like activities in plants, regulating multiple aspects of growth and development. Due to its role in mitigating oxidative stress and facilitating osmoprotectant accumulation, MLT enhances abiotic stress tolerance, although the pathways and metabolic mechanisms involved remain unclear despite being studied in various crops. This work aimed to investigate the changes elicited by the exogenous MLT application at different concentrations (10, 50, 150 μM) and its role in mitigating the salinity stress in Lactuca sativa L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!