Mechanism for the separation of large molecules based on radial migration in capillary electrophoresis.

Anal Chem

Ames Laboratory--USDOE, Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.

Published: August 2003

We demonstrate a novel separation mechanism for large molecules based on their radial migration in capillary electrophoresis with applied hydrodynamic flow (HDF). The direction of radial migration depends on the direction of the applied HDF relative to the electric field. The radial migration velocities are size-dependent, which could be attributed to the different degree of deformation under shear flow. Analytical separation was demonstrated on a sample plug containing lambda DNA (48 502 bp) and phiX174 RF DNA (5386 bp) with baseline separation. Alternatively, this separation mode can be performed continuously and is thus applicable to preparative separations. Without the need for gel/polymer or complex instrumentation, this separation technique is complementary to capillary gel electrophoresis and field-flow fractionation. Although large DNA molecules were used to demonstrate the separation mechanism here, these protocols could also be applied to the separation of proteins, cells, or particles based on size, shape, or deformability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac034430uDOI Listing

Publication Analysis

Top Keywords

radial migration
16
large molecules
8
molecules based
8
based radial
8
migration capillary
8
capillary electrophoresis
8
separation mechanism
8
separation
7
mechanism separation
4
separation large
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!