[Time consumption and quality of an automated fusion tool for SPECT and MRI images of the brain].

Nuklearmedizin

Nuklearmedizinische Klinik mit Poliklinik, Krankenhausstrasse 12, 91054 Erlangen, Germany.

Published: October 2003

Aim: Although the fusion of images from different modalities may improve diagnostic accuracy, it is rarely used in clinical routine work due to logistic problems. Therefore we evaluated performance and time needed for fusing MRI and SPECT images using a semiautomated dedicated software. PATIENTS, MATERIAL AND METHOD: In 32 patients regional cerebral blood flow was measured using (99m)Tc ethylcystein dimer (ECD) and the three-headed SPECT camera MultiSPECT 3. MRI scans of the brain were performed using either a 0,2 T Open or a 1,5 T Sonata. Twelve of the MRI data sets were acquired using a 3D-T1w MPRAGE sequence, 20 with a 2D acquisition technique and different echo sequences. Image fusion was performed on a Syngo workstation using an entropy minimizing algorithm by an experienced user of the software. The fusion results were classified. We measured the time needed for the automated fusion procedure and in case of need that for manual realignment after automated, but insufficient fusion.

Results: The mean time of the automated fusion procedure was 123 s. It was for the 2D significantly shorter than for the 3D MRI datasets. For four of the 2D data sets and two of the 3D data sets an optimal fit was reached using the automated approach. The remaining 26 data sets required manual correction. The sum of the time required for automated fusion and that needed for manual correction averaged 320 s (50-886 s).

Conclusion: The fusion of 3D MRI data sets lasted significantly longer than that of the 2D MRI data. The automated fusion tool delivered in 20% an optimal fit, in 80% manual correction was necessary. Nevertheless, each of the 32 SPECT data sets could be merged in less than 15 min with the corresponding MRI data, which seems acceptable for clinical routine use.

Download full-text PDF

Source

Publication Analysis

Top Keywords

data sets
24
automated fusion
20
mri data
16
manual correction
12
fusion
9
fusion tool
8
mri
8
clinical routine
8
time needed
8
data
8

Similar Publications

Parkinson's disease (PD), a degenerative disorder of the central nervous system, is commonly diagnosed using functional medical imaging techniques such as single-photon emission computed tomography (SPECT). In this study, we utilized two SPECT data sets (n = 634 and n = 202) from different hospitals to develop a model capable of accurately predicting PD stages, a multiclass classification task. We used the entire three-dimensional (3D) brain images as input and experimented with various model architectures.

View Article and Find Full Text PDF

Efficient and accurate determination of the degree of substitution of cellulose acetate using ATR-FTIR spectroscopy and machine learning.

Sci Rep

January 2025

Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76344, Germany.

Multiple linear regression models were trained to predict the degree of substitution (DS) of cellulose acetate based on raw infrared (IR) spectroscopic data. A repeated k-fold cross validation ensured unbiased assessment of model accuracy. Using the DS obtained from H NMR data as reference, the machine learning model achieved a mean absolute error (MAE) of 0.

View Article and Find Full Text PDF

The need for effective early detection and optimal therapy monitoring of cardiovascular diseases as the leading cause of death has led to an adaptation of the guidelines with a focus on cardiac computed tomography (CCTA) in patients with a low to intermediate risk of coronary heart disease (CHD). In particular, the introduction of photon-counting computed tomography (PCCT) in CT diagnostics promises significant advances through higher temporal and spatial resolution, and also enables advanced texture analysis, known as radiomics analysis. Originally developed in oncological imaging, radiomics analysis is increasingly being used in cardiac imaging and research.

View Article and Find Full Text PDF

The application of supervised models to clinical screening tasks is challenging due to the need for annotated data for each considered pathology. Unsupervised Anomaly Detection (UAD) is an alternative approach that aims to identify any anomaly as an outlier from a healthy training distribution. A prevalent strategy for UAD in brain MRI involves using generative models to learn the reconstruction of healthy brain anatomy for a given input image.

View Article and Find Full Text PDF

Identification of high-risk oral leukoplakia (OLK) using combined Raman spectroscopic analysis of brush biopsy and saliva samples: A proof of concept study.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Centre for Radiation and Environmental Science, FOCAS Research Institute, Technological University Dublin, City Campus, Dublin, Ireland; School of Physics, Clinical and Optometric Sciences, Technological University Dublin, City Campus, Dublin, Ireland.

The gold standard method of diagnosis of oral leukoplakia (OLK) is a tissue biopsy followed by histological examination. Raman spectroscopic studies of cytological brush biopsy and saliva samples have previously been shown to differentiate low (no and mild dysplasia) and high risk (moderate and severe dysplasia) OLKs, discriminant models of cellular samples achieving higher specificity, whereas those based on saliva samples achieved higher sensitivity. The current study combines the spectral data sets of cell and saliva samples in an attempt to improve the overall efficiency of the discriminating models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!