Objective: Mechanisms underlying mucosal transmission of HIV-1 are incompletely understood. We describe the anti-HIV-1 activity of human beta-defensins (hBD), small cationic molecules that provide protection at mucosal surfaces.
Methods And Results: HIV-1 induced expression of hBD-2 and -3 mRNA (but not that of hBD-1) 4- to 78-fold, respectively, above baseline in normal human oral epithelial cells. HIV-1 failed to infect these cells, even after 5 days of exposure. Recombinant hBD-1 had no antiviral activity, while rhBD-2 and rhBD-3 showed concentration-dependent inhibition of HIV-1 replication without cellular toxicity. Inhibition was greater against CXCR4-tropic than against the CCR5-tropic HIV-1 isolates. hBD-2 and hBD-3 induced an irreversible effect on virion infectivity, with electron microscopy confirming binding of hBDs to viral particles. Finally, hBD-2 and -3 induced downmodulation of the HIV-1 coreceptor CXCR4 (but not CCR5) in peripheral blood mononuclear cells and T lymphocytic cells as shown by confocal microscopy and flow cytometry.
Conclusions: This study shows for the first time that HIV-1 induces beta-defensin expression in human oral epithelial cells and that beta-defensins block HIV-1 replication via a direct interaction with virions and through modulation of the CXCR4 coreceptor. These properties may be exploited as strategies for mucosal protection against HIV-1 transmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00002030-200311070-00001 | DOI Listing |
Math Biosci Eng
December 2024
Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, D-06217 Merseburg, Germany.
In this article, we reconsider the classical target cell limited dynamical within-host HIV model, solely taking into account the interaction between $ {\rm{CD}}4^{+} $ T cells and virus particles. First, we summarize some analytical results regarding the corresponding dynamical system. For that purpose, we proved some analytical results regarding the system of differential equations as our first main contribution.
View Article and Find Full Text PDFASN Neuro
January 2025
Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA.
People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.
View Article and Find Full Text PDFJ Gen Virol
January 2025
Division of Infection and Immunity, UCL, London, WC1E 6BT, UK.
Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection.
View Article and Find Full Text PDFUnlabelled: -methyladenosine (m A) is the most prevalent cellular mRNA modification and plays a critical role in regulating RNA stability, localization, and gene expression. m A modification plays a vital role in modulating the expression of viral and cellular genes during HIV-1 infection. HIV-1 infection increases cellular RNA m A levels in many cell types, which facilitates HIV-1 replication and infectivity in target cells.
View Article and Find Full Text PDFCell Rep
January 2025
Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA. Electronic address:
We developed viral sensor and restriction factor-cytometry by time of flight (VISOR-CyTOF), which profiles 19 viral sensors and restriction factors (VISORs) simultaneously in single cells, and applied it to 41 postmortem tissues from people with HIV. Mucosal myeloid cells are well equipped with SAMHD1 and sensors of viral capsid and DNA while CD4 T cells are not. In lymph node CD4 Tfh, VISOR expression patterns reflect those favoring integration but blocking HIV gene expression, thus favoring viral latency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!