Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity.

Brain

Neurosciences Unit, Great Ormond Street Hospital and Institute of Child Health, and Department of Neuroinflammation, Institute of Neurology, University College London, UK.

Published: January 2004

In 1916, von Economo first described encephalitis lethargica (EL), a CNS disorder presenting with pharyngitis followed by sleep disorder, basal ganglia signs (particularly parkinsonism) and neuropsychiatric sequelae. Since the 1916-1927 epidemic, only sporadic cases have been described. Pathological studies revealed an encephalitis of the midbrain and basal ganglia, with lymphocyte (predominantly plasma cell) infiltration. The EL epidemic occurred during the same time period as the 1918 influenza pandemic, and the two outbreaks have been linked in the medical literature. However, von Economo and other contemporary scientists thought that the 1918 influenza virus was not the cause of EL. Recent examination of archived EL brain material has failed to demonstrate influenza RNA, adding to the evidence that EL was not an invasive influenza encephalitis. By contrast, the findings of intrathecal oligoclonal bands (OCB) and beneficial effects of steroid treatments have provoked the hypothesis that EL may be immune-mediated. We have recently seen 20 patients with a similar EL phenotype, 55% of whom had a preceding pharyngitis. The patients had remarkable similarity to the historical descriptions of EL: sleep disorder (somnolence, sleep inversion or insomnia), lethargy, parkinsonism, dyskinesias and neuropsychiatric symptoms. CSF examination commonly showed elevated protein and OCB (75 and 69% respectively). Investigation found no evidence of viral encephalitis or other recognized causes of rapid-onset parkinsonism. MRI of the brain was normal in 60% but showed inflammatory changes localized to the deep grey matter in 40% of patients. We investigated the possibility that this phenotype could be a postinfectious autoimmune CNS disorder, and therefore similar to Sydenham's chorea. Anti-streptolysin-O titres were elevated in 65% of patients. Furthermore, western immunoblotting showed that 95% of EL patients had autoantibodies reactive against human basal ganglia antigens. These antibodies were also present in the CSF in four patients tested. By contrast, antibodies reactive against the basal ganglia were found in only 2-4% of child and adult controls (n = 173, P < 0.0001). Rather than showing polyspecific binding, these antibodies bound to common neural autoantigens of molecular weight 40, 45, 60 and 98 kDa. Regional tissue comparisons showed that the majority of these autoantigens were specific to or enriched in CNS tissue. Immunohistochemistry with secondary staining localized antibody binding to neurons rather than glial populations. Further investigation is required to determine whether these antibodies affect neuronal function (i.e. whether they are pathogenic anti-neuronal antibodies). Histopathology in one case demonstrated striatal encephalitis with perivenous B- and T-lymphocytic infiltration. We believe an EL-like syndrome is still prevalent, and propose that this syndrome may be secondary to autoimmunity against deep grey matter neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awh008DOI Listing

Publication Analysis

Top Keywords

basal ganglia
20
encephalitis lethargica
8
von economo
8
cns disorder
8
sleep disorder
8
1918 influenza
8
deep grey
8
grey matter
8
encephalitis
6
patients
6

Similar Publications

Valence and salience encoding in the central amygdala.

Elife

January 2025

Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States.

The central amygdala (CeA) has emerged as an important brain region for regulating both negative (fear and anxiety) and positive (reward) affective behaviors. The CeA has been proposed to encode affective information in the form of valence (whether the stimulus is good or bad) or salience (how significant is the stimulus), but the extent to which these two types of stimulus representation occur in the CeA is not known. Here, we used single cell calcium imaging in mice during appetitive and aversive conditioning and found that majority of CeA neurons (~65%) encode the valence of the unconditioned stimulus (US) with a smaller subset of cells (~15%) encoding the salience of the US.

View Article and Find Full Text PDF

Unravelling Secondary Brain Injury: Insights from a Human-Sized Porcine Model of Acute Subdural Haematoma.

Cells

December 2024

Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany.

Article Synopsis
  • Traumatic brain injury (TBI) is a leading cause of death, complicating the development of effective therapies due to the unique nature of each injury.
  • Clinical questions regarding the benefits of measuring intracranial pressure, cerebral perfusion pressure, and surgical interventions remain largely unanswered.
  • This study focused on acute subdural hematoma in a porcine model to better understand secondary brain injury and the effects of different injury patterns on outcomes, highlighting the need for comprehensive models to improve TBI treatment translation.
View Article and Find Full Text PDF

Background: Addiction affects millions of people, often resulting from a complex interplay between genetic and environmental factors, and is frequently linked to mental health disorders. Many experts agree there is no cure for addiction, but there are effective treatments available. Many patients continue to succumb to addiction despite treatment.

View Article and Find Full Text PDF

In vivo calcium imaging in freely moving rats using miniscopes provides valuable information about the neural mechanisms of behavior in real time. A gradient index (GRIN) lens can be implanted in deep brain structures to relay activity from single neurons. While such procedures have been successful in mice, few reports provide detailed procedures for successful surgery and long-term imaging in rats, which are better suited for studying complex human behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!