Flower development: initiation, differentiation, and diversification.

Annu Rev Cell Dev Biol

Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA.

Published: February 2004

Flowering is one of the most intensively studied processes in plant development. Despite the wide diversity in floral forms, flowers have a simple stereotypical architecture. Flowers develop from florally determined meristems. These small populations of cells proliferate to form the floral organs, including the sterile outer organs, the sepals and petals, and the inner reproductive organs, the stamens and carpels. In the past decade, analyses of key flowering genes have been carried out primarily in Arabidopsis and have provided a foundation for understanding the underlying molecular genetic mechanisms controlling different aspects of floral development. Such studies have illuminated the transcriptional cascades responsible for the regulation of these key genes, as well as how these genes effect their functions. In turn, these studies have resulted in the refinement of the original ideas of how flowers develop and have indicated the gaps in our knowledge that need to be addressed.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.cellbio.19.111301.134635DOI Listing

Publication Analysis

Top Keywords

flowers develop
8
flower development
4
development initiation
4
initiation differentiation
4
differentiation diversification
4
diversification flowering
4
flowering intensively
4
intensively studied
4
studied processes
4
processes plant
4

Similar Publications

Decay of self-incompatibility within a lifespan in Physalis acutifolia (Solanaceae).

Plant Reprod

January 2025

Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street, Boulder, CO, 80309, USA.

Self-incompatibility decays with age in plants of Physalis acutifolia, and plants that have transitioned to selfing produce fewer seeds but with comparable viability. Self-compatibility in this system is closely related to flower size, which is in turn dependent on the direction of the cross, suggesting parental effects on both morphology and compatibility. The sharpleaf groundcherry, Physalis acutifolia, is polymorphic for self-compatibility, with naturally occurring self-incompatible (SI) and self-compatible (SC) populations.

View Article and Find Full Text PDF

Genome sequence of ZAPR22R, isolated from calla lily in China.

Microbiol Resour Announc

January 2025

Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.

Here, we present the complete genome sequence of strain ZAPR22R, isolated from the petiole and tuber of calla lily (), infected with soft rot. The genome consists of a single chromosome (4,528,722 bp) with a G+C content of 41.1%.

View Article and Find Full Text PDF

Flometoquin (FLO) is a novel quinoline-type insecticide that elicits a quick knock-down effect against target pests; however, its mode of action (MoA) remains unknown. In this study, we investigated its MoA systematically, using varying biochemical techniques. Since FLO-treated insects exhibited symptoms similar to those induced by respiratory inhibitors, we examined the effect of FLO on respiratory enzyme complexes using mitochondria isolated from different insects (housefly, diamondback moth, and western flower thrips).

View Article and Find Full Text PDF

Revisiting the female germline cell development.

Front Plant Sci

January 2025

College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.

The formation of the female germline is the fundamental process in most flowering plants' sexual reproduction. In , only one somatic cell obtains the female germline fate, and this process is regulated by different pathways. Megaspore mother cell (MMC) is the first female germline, and understanding MMC development is essential for comprehending the complex mechanisms of plant reproduction processes.

View Article and Find Full Text PDF

Molecular docking-guided in-depth investigation of the biological activities and phytochemical and mineral profiles of endemic Phlomis capitata.

J Sci Food Agric

January 2025

Bee and Natural Products R&D and P&D Application and Research Center, Bingöl University, Bingöl, Turkey.

Background: Phlomis capitata is an endemic species of flowering aromatic and medicinal plant in the family Lamiaceae, native to regions of the Mediterranean and nearby areas. Understanding the chemical compounds present in P. capitata can reveal potential medicinal properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!