Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have performed a noninvasive bilateral optical imaging study of the hemodynamic evoked response to unilateral finger opposition task, finger tactile, and electrical median nerve stimulation in the human sensorimotor cortex. This optical study shows the hemoglobin-evoked response to voluntary and nonvoluntary stimuli. We performed measurements on 10 healthy volunteers using block paradigms for motor, sensory, and electrical stimulations of the right and left hands separately. We analyzed the spatial/temporal features and the amplitude of the optical signal induced by cerebral activation during these three paradigms. We consistently found an increase (decrease) in the cerebral concentration of oxy-hemoglobin (deoxy-hemoglobin) at the cortical side contralateral to the stimulated side. We observed an optical response to activation that was larger in size and amplitude during voluntary motor task compared to the other two stimulations. The ipsilateral response was consistently smaller than the contralateral response, and even reversed (i.e., a decrease in oxy-hemoglobin, and an increase in deoxy-hemoglobin) in the case of the electrical stimulation. We observed a systemic contribution to the optical signal from the increase in the heart rate increase during stimulation, and we made a first attempt to subtract it from the evoked hemoglobin signal. Our findings based on optical imaging are in agreement with results in the literature obtained with positron emission tomography and functional magnetic resonance imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786740 | PMC |
http://dx.doi.org/10.1111/1469-8986.00057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!