The variant antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), present on the surface of P. falciparum-parasitized erythrocytes (PE), plays a central role in naturally acquired immunity, although antibodies to PfEMP1 are predominantly variant specific. To overcome this major limitation for vaccine development, we immunized mice with three cysteine-rich interdomain 1 (CIDR1) domains of PfEMP1 that have the critical function of binding the PE to CD36 on endothelium and thus preventing spleen-dependent killing of the parasite. The immunizations consisted of different combinations of three CIDR1 encoded by DNA followed by recombinant protein boost. Immunizations with a single variant in a prime-boost regimen induced no or low cross-reactivity toward heterologous CIDR1; however, a broad range of crossreactivity was detected in mice that were immunized with all three variants simultaneously. The induced crossreactivity suggests that an anti-PfEMP1 vaccine may be possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC240735PMC
http://dx.doi.org/10.1073/pnas.2235588100DOI Listing

Publication Analysis

Top Keywords

plasmodium falciparum
8
induction crossreactive
4
crossreactive antibodies
4
antibodies plasmodium
4
variant
4
falciparum variant
4
variant protein
4
protein variant
4
variant antigen
4
antigen plasmodium
4

Similar Publications

Monitoring molecular markers associated with antimalarial drug resistance in south-east Senegal from 2021 to 2023.

J Antimicrob Chemother

January 2025

Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal.

Background: Since 2006, artemisinin-based combination therapies (ACTs) have been introduced in Senegal in response to chloroquine resistance (CQ-R) and have shown high efficacy against Plasmodium falciparum. However, the detection of the PfKelch13R515K mutation in Kaolack, which confers artemisinin resistance in vitro, highlights the urgency of strengthening antimalarial drug surveillance to achieve malaria elimination by 2030.

Objective: To assess the proportion of P.

View Article and Find Full Text PDF

The study presents two imported malaria cases with a history of travel to malaria-endemic areas and replied late response to treatment. In the blood preparations of the first case, dot-shaped nucleus structures were identified in the erythrocytes, which looked different from the classical erythrocytic forms. In the SD-Pf/Pan test, bands were obtained for both P.

View Article and Find Full Text PDF

Background: Malaria remains a leading cause of death worldwide, claiming over 600,000 lives each year. Over 90% of these deaths, mostly among children under 5 years, occur in sub-Saharan Africa and are caused by Plasmodium falciparum. The merozoites stage of the parasite, crucial for asexual development invade erythrocytes through ligand-receptor interactions.

View Article and Find Full Text PDF

Development of highly sensitive lateral flow immunoassay using PdNPs for detection of Plasmodium species.

Clin Chim Acta

January 2025

ARKRAY Healthcare Pvt. Ltd., Plot No. 336, 338, 340, Rd Number 3, GIDC, Sachin, 394230 Surat, Gujarat, India.

A lateral flow immunoassay (LFIA) employing palladium nanoparticles (PdNPs) labelled with antibodies has been innovatively designed for the precise detection of Plasmodium falciparum pLDH and HRPII antigen. This study focuses on development of LFIA based on PdNPs detection system to substantially enhance the visual detectability (vLOD), achieving an impressive 12 parasites/microliter (p/µl) vLOD in comparison with conventional system represented 50 p/µl vLOD. The research introduces a novel amplification system that not only heightens the sensitivity of LFIA but also maintains intense coloration.

View Article and Find Full Text PDF

Raf Kinase Inhibitor Protein (RKIP) is an important regulator of the MAPK signaling pathway in multicellular eukaryotes. Plasmodium falciparum RKIP (PfRKIP) is a putative phosphatidylethanolamine binding protein (PEBP) that shares limited similarity with Homo sapiens RKIP (HsRKIP). Interestingly, critical components of the MAPK pathway are not expressed in malaria parasites and the physiological function of PfRKIP remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!