It was recently shown that vascular endothelial growth factor (VEGF), a growth factor for endothelial cells, plays a pivotal role in rheumatoid arthritis. VEGF binds to specific receptors, known as VEGF-RI and VEGF-RII. We assessed the physical and histological effects of selective blockade of VEGF and its receptors in transgenic K/BxN mice, a model of rheumatoid arthritis very close to the human disease. Mice were treated with anti-mouse VEGF Ab, anti-mouse VEGF-RI and -RII Abs, and an inhibitor of VEGF-RI tyrosine kinase. Disease activity was monitored using clinical indexes and by histological examination. We found that synovial cells from arthritic joints express VEGF, VEGF-RI, and VEGF-RII. Treatment with anti-VEGF-RI strongly attenuated the disease throughout the study period, while anti-VEGF only transiently delayed disease onset. Treatment with anti-VEGF-RII had no effect. Anti-VEGF-RI reduced the intensity of clinical manifestations and, based on qualitative and semiquantitative histological analyses, prevented joint damage. Treatment with a VEGF-RI tyrosine kinase inhibitor almost abolished the disease. These results show that VEGF is a key factor in pannus development, acting through the VEGF-RI pathway. The observation that in vivo administration of specific inhibitors targeting the VEGF-RI pathway suppressed arthritis and prevented bone destruction opens up new possibilities for the treatment of rheumatoid arthritis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.171.9.4853 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!