Suppression by regulatory T cells is now acknowledged to play a key role in the down-regulation of T cell responses to foreign and self Ags. In addition to the naturally occurring CD4(+)CD25(+) population, several subtypes of induced regulatory cells have been reported, but their mechanisms of action remain unclear. Conversely, cytotoxic CD4(+) cells that lyse cells presenting their cognate peptide have been described, but their potential role in immunoregulation remains to be delineated. A CD4(+) T cell line derived from BALB/c mice immunized with peptide 21-35, containing a major T cell epitope of a common allergen, Dermatophagoides pteronyssinus group 2 allergen, was found to lyse the Ag-presenting WEHI cell line via Fas-Fas ligand and only in the presence of the cognate peptide. Cytolytic activity was likewise shown for other T cell lines and occurred even after a single cycle of in vitro stimulation. Moreover, T cells that efficiently lysed WEHI cells were unresponsive to stimulation with their cognate Ag and were dependent on IL-2 for growth and survival, which was reflected in a constitutive expression of CD25 independently of activation status. Proliferating B cells were also killed by the CTLs. By lysing Ag-presenting B cells in an epitope-specific manner, the nonproliferating CTLs were shown to down-regulate the proliferation of bystander T cells. These data demonstrate that cytotoxic CD4(+)CD25(+) T cells that lack proliferation capacities have the potential to down-regulate an immune response by killing Ag-presenting B cells. This could represent an important and specific down-regulatory mechanism of secondary immune responses in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.171.9.4604DOI Listing

Publication Analysis

Top Keywords

cells
12
cd4+cd25+ cells
8
cells lyse
8
fas-fas ligand
8
epitope-specific manner
8
regulatory cells
8
cognate peptide
8
ag-presenting cells
8
cell
5
lyse antigen-presenting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!