Cl- sensitive biosensor used electrolyte-solution-gate diamond FETs.

Biosens Bioelectron

School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.

Published: November 2003

We have investigated the electrolyte-solution-gate field effect transisitors (SGFETs) used hydrogen terminated (H-terminated) or partially oxygen terminated (O-terminated) polycrystalline diamond surface in the Cl- and Br- ionic solutions. The H-terminated channel SGFETs are insensitive to pH values in electrolyte solutions. The threshold voltages of the diamond SGFETs shift according to the density of Cl- and Br- ions about 30 mV/decade. One of the attractive biomedical applications for the Cl- sensitive SGFETs is the detection of chloride density in blood or in sweat especially in the case of cystic fibrosis. The sensitivities of Cl- and Br- ions have been lost on the partially O-terminated diamond surface. These phenomena can be explained by the polarity of surface change on the H-terminated and the O-terminated surface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0956-5663(03)00174-xDOI Listing

Publication Analysis

Top Keywords

cl- br-
12
cl- sensitive
8
diamond surface
8
br- ions
8
cl-
5
sensitive biosensor
4
biosensor electrolyte-solution-gate
4
diamond
4
electrolyte-solution-gate diamond
4
diamond fets
4

Similar Publications

Arvimicrobium flavum gen. nov., sp. nov., A Novel Genus in the Family Phyllobacteriaceae Isolated From Forest Soil.

Curr Microbiol

December 2024

Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea.

During the study of microbial diversity of forest soil in the Republic of Korea, a yellow pigment-producing, Gram-stain-negative, rod-shaped, motile bacterium was isolated and designated as strain 1W2. This strain grew at temperature of 10-37 °C, at pH of 5.0-9.

View Article and Find Full Text PDF

For the first time, critical review on R. Br. (Boraginaceae) is established.

View Article and Find Full Text PDF

The Rhipicephalus sanguineus group is an assembly of species morphologically and phylogenetically related to Rhipicephalus sanguineus sensu stricto. The taxonomy and systematics of this species group have remained obscure for a long time, but extensive research conducted during the past two decades has closed many knowledge gaps. These research advancements culminated in the redescription of R.

View Article and Find Full Text PDF

Photonic platform coupled with machine learning algorithms to detect pyrolysis products of crack cocaine in saliva: A proof-of-concept animal study.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil. Electronic address:

The non-invasive detection of crack/cocaine and other bioactive compounds from its pyrolysis in saliva can provide an alternative for drug analysis in forensic toxicology. Therefore, a highly sensitive, fast, reagent-free, and sustainable approach with a non-invasive specimen is relevant in public health. In this animal model study, we evaluated the effects of exposure to smoke crack cocaine on salivary flow, salivary gland weight, and salivary composition using Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy.

View Article and Find Full Text PDF

Deep dive into the diversity and properties of rhodopsins in actinomycetes of the family Geodermatophilaceae.

J Photochem Photobiol B

December 2024

All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, 142290 Pushchino, Moscow Region, Russia.

In recent decades, most studies of microbial rhodopsins have focused on their identification and characterization in aquatic bacteria. In 2021, actinomycetes of the family Geodermatophilaceae, commonly inhabiting terrestrial ecosystems in hot and arid regions, have been reported to contain rhodopsins with DTEW, DTEF and NDQ amino acid motifs. An advanced bioinformatics analysis performed in this work additionally revealed NTQ rhodopsin and heliorhodopsins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!