Platelet-activating factor (PAF), a biologically active lipid (1-O-alkyl-2-acetyl-sn-glycero-3-phosphoholine), is identified in different regions of brain, including hippocampus. Specific PAF-activated receptors (PAFRs) are expressed in corresponding brain areas. PAF has been proposed to be a retrograde messenger of long-term potentiation (LTP): the antagonist of PAFRs, ginkgolide B (or BN52021) prevents induction of LTP. Recently it has been found that ginkgolide B is also an efficient blocker of the glycine receptor (GlyR) operated chloride channels (IC(50)=270+/-10 nM in hippocampal pyramidal neurons). The question is as follows: is the alteration of LTP by BN52021 due to the PAF antagonism or to the inhibition of glycine-gated chloride channels? We have studied the effects of ginkgolides B and J on LTP induced in the CA1 area of rat hippocampus. Ginkgolide J which is the weakest blocker of PAFR (IC(50)=54 microM, as compared to IC(50)=2.5 microM for ginkgolide B) inhibits GlyR-operated channels with IC(50)=2.0 microM. This assures a convenient concentration window which allows to inhibit GlyR-operated channels without affecting PAFRs. An amount of 5 microM of ginkgolide J did not prevent the induction of LTP, while ginkgolide B (5 microM) completely inhibited this phenomenon. The effect of ginkgolide B on LTP did not alter considerably if GlyRs were blocked by strychnine (2 microM). Strychnine itself had no significant effect on the induction of LTP. Both ginkgolides and strychnine significantly facilitated short-term potentiation (STP). Our data support a hypothesis according to which ginkgolides affect LTP by inhibiting PAFRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0197-0186(03)00126-8 | DOI Listing |
Metab Brain Dis
December 2021
Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China.
Ginkgo biloba extract 761 (EGb761), a standardized extract from the Ginkgo biloba leaf, is purported to inhibit NMDA receptor-mediated neuronal excitotoxicity and protect neurons form ischemic injury. However, the specific signal pathway involved in the effects of EGb761 on synaptic plasticity is still in dispute. In this article, effects of EGb761 and its monomer component ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and quercetin on rat hippocampal synaptic plasticity were studied.
View Article and Find Full Text PDFNeurosci Lett
February 2016
The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA. Electronic address:
It is well established that HIV-1-infected mononuclear phagocytes release platelet activating factor (PAF) and elevated levels of PAF have been detected in blood and in the cerebrospinal fluid (CSF) of acquired immunodeficiency syndrome (AIDS) patients with HIV-associated neurocognitive disorders (HAND). It is our hypothesis that the elevated levels of PAF alter long-term potentiation (LTP) in the hippocampus, leading to neurocognitive dysfunction. To test this hypothesis, we studied the effects of PAF on LTP in the CA1 region of rat hippocampal slices.
View Article and Find Full Text PDFZhongguo Ying Yong Sheng Li Xue Za Zhi
May 2004
Department of Physiology, School of Basic Medical Sciences, Tongli Medical College, Wuhan 430030, China.
Aim: To investigate the influence of platelet-activating factor (PAF) receptor on long-term potentiation (LTP) attenuated by aluminium.
Methods: The method of extracellular recording was used to investigate the effect of PAF receptors on PP-CA3 LTP by microinjection of PAF receptor antagonist Ginkgolide B or agonist mc-PAF into CA3 area.
Results: (1) Amplitude of population spikes (PS) of evoked potential was not affected but LTP induction was blocked by 0.
Neurochem Int
February 2004
Department of Cellular Membranology, A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Bogomoletz St. 4, 01024, Kiev, Ukraine.
Platelet-activating factor (PAF), a biologically active lipid (1-O-alkyl-2-acetyl-sn-glycero-3-phosphoholine), is identified in different regions of brain, including hippocampus. Specific PAF-activated receptors (PAFRs) are expressed in corresponding brain areas. PAF has been proposed to be a retrograde messenger of long-term potentiation (LTP): the antagonist of PAFRs, ginkgolide B (or BN52021) prevents induction of LTP.
View Article and Find Full Text PDFActa Otolaryngol Suppl
February 2002
Department of Internal Medicine, Section of Human Physiology, University of Perugia, Perugia, Italy.
In rat brainstem slices, we investigated the differential role of nitric oxide (NO) and platelet-activating factor (PAF) in long-term potentiation (LTP) induced in the ventral portion of the medial vestibular nuclei (MVN) by high-frequency stimulation (HFS) of the primary vestibular afferents. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO) and the PAF receptor antagonist ginkgolide B (BN-52021) were administered before and after induction of potentiation. The effect of carboxy-PTIO was to completely prevent LTP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!