We analytically compute the apparent diffusion coefficient D(app) for an open restricted geometry, such as an extended porous medium, for the case of a pulsed-field gradient (PFG) experiment with finite-width pulses. In the short- and long-time limits, we give explicit, model-independent expressions that correct for the finite duration of the pulses and can be used to extract the pore surface-to-volume (S/V) ratio as well as the tortuosity. For all times, we compute D(app) using a well-established model form of the actual time-dependent diffusion coefficient D(t) that can be obtained from an ideal narrow-pulse PFG. We compare D(app) and D(t) and find that, regardless of pulse widths and geometry-dependent parameters, the two quantities deviate by less than 20%. These results are in sharp contrast with the studies on closed geometries [J. Magn. Reson. A 117 (1995) 209], where the effects of finite gradient-pulse widths are large. The analytical results presented here can be easily adapted for different pulse protocols and time sequences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1090-7807(03)00248-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!