Correlation analysis has been widely used in the study of functional connectivity based on fMRI data. It assumes that the relevant information about the interactions of brain regions is reflected by a linear relationship between the values of two signals at the same time. However, this hypothesis has not been thoroughly investigated yet. In this work, we study in depth the information shared by BOLD signals of pairs of brain regions. In particular, we assess the amount of nonlinear and/or nonsynchronous interactions present in data. This is achieved by testing models reflecting linear, synchronous interactions against more general models, encompassing nonlinear, nonsynchronous interactions. Many factors influencing measured BOLD signals are critical for the study of connectivity, such as paradigm-induced BOLD responses, preprocessing, motion artifacts, and geometrical distortions. Interactions are also influenced by the proximity of brain regions. The influence of all these factors is taken into account and the nature of the interactions is studied using various experimental conditions such that the conclusions reached are robust with respect to variation of these factors. After defining nonlinear and/or nonsynchronous interaction models in the framework of general linear models, statistical tests are performed on different fMRI data sets to infer the nature of the interactions. Finally, a new connectivity metric is proposed which takes these inferences into account. We find that BOLD signal interactions are statistically more significant when taking into account the history of the distant signal, i.e., the signal from the interacting region, than when using a model of linear instantaneous interaction. Moreover, about 75% of the interactions are symmetric, as assessed with the proposed connectivity metric. The history-dependent part of the coupling between brain regions can explain a high percentage of the variance in the data sets studied. As these results are robust with respect to various confounding factors, this work suggests that models used to study the functional connectivity between brain areas should in general take the BOLD signal history into account.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1053-8119(03)00340-9DOI Listing

Publication Analysis

Top Keywords

brain regions
16
functional connectivity
12
bold signals
12
interactions
10
study functional
8
fmri data
8
nonlinear and/or
8
and/or nonsynchronous
8
nonsynchronous interactions
8
nature interactions
8

Similar Publications

Anxiety and depression disorders show high prevalence rates, and stress is a significant risk factor for both. However, studies investigating the interplay between anxiety, depression, and stress regulation in the brain are scarce. The present manuscript included 124 law students from the LawSTRESS project.

View Article and Find Full Text PDF

Unlabelled: Respiratory and encephalitic virus infections represent a significant risk to public health globally. Detailed investigations of immunological responses and disease outcomes during sequential virus infections are rare. Here, we define the impact of influenza virus infection on a subsequent virus encephalitis.

View Article and Find Full Text PDF

Healthy brain aging involves changes in both brain structure and function, including alterations in cellular composition and microstructure across brain regions. Unlike diffusion-weighted MRI (dMRI), diffusion-weighted MR spectroscopy (dMRS) can assess cell-type specific microstructural changes, providing indirect information on both cell composition and microstructure through the quantification and interpretation of metabolites' diffusion properties. This work investigates age-related changes in the higher-order diffusion properties of total N-Acetyl-aspartate (neuronal biomarker), total choline (glial biomarker), and total creatine (both neuronal and glial biomarker) beyond the classical apparent diffusion coefficient in cerebral and cerebellar gray matter of healthy human brain.

View Article and Find Full Text PDF

Introduction: Chronic low back pain (CLBP) is a global health issue, and its nonspecific causes make treatment challenging. Understanding the neural mechanisms of CLBP should contribute to developing effective therapies.

Objectives: To compare current source density (CSD) and functional connectivity (FC) extracted from resting electroencephalography (EEG) between patients with CLBP and healthy controls and to examine the correlations between EEG indices and symptoms.

View Article and Find Full Text PDF

Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!