Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is believed that pericentromeric heterochromatin may play a major role in the epigenetic regulation of gene expression. We have previously shown that centromeres in human peripheral blood cells aggregate into distinct "myeloid" and "lymphoid" spatial patterns, suggesting that the three-dimensional organization of centromeric heterochromatin in interphase may be ontogenically determined during hematopoietic differentiation. To investigate this possibility, the spatial patterns of association of different centromeres were analyzed in hematopoietic progenitors and compared with those in early-B and early-T cells, mature B and T lymphocytes, and, additionally, mature granulocytes and monocytes. We show that those patterns change during lymphoid differentiation, with major spatial arrangements taking place at different stages during T and B cell differentiation. Heritable patterns of centromere association are observed, which can occur either at the level of the common lymphoid progenitor, or in early-T or early-B committed cells. A correlation of the observed patterns of centromere association with the gene content of the respective chromosomes further suggests that the variation in the composition of these heterochromatic structures may contribute to the dynamic relocation of genes in different nuclear compartments during cell differentiation, which might have functional implications for cell-stage-specific gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-4827(03)00335-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!