Kinetic analysis of subunit oligomerization of the legume lectin soybean agglutinin.

Biochemistry

Department of Chemistry, Presidency College, Calcutta 700 073, India.

Published: October 2003

The reconstitution of soybean agglutinin (SBA), a tetrameric GalNAc/Gal-specific legume lectin, after denaturation in urea has been studied using fluorescence, far-UV CD, a hemagglutination assay, and chemical cross-linking with glutaraldehyde as a bifunctional reagent. The reconstituted protein exhibits similar quaternary structure and activity as of native lectin. The kinetics of subunit oligomerization has been determined from the cross-linking reaction of the reconstituting protein followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Monomers and tetramers could be quantitatively analyzed during reconstitution. Dimers are not detectable. The reassociation reaction follows second-order kinetics. The results are described by a kinetic mechanism in which the monomer-to-dimer association (characterized by a second-order rate constant (k(1)) of 1.4 x 10(4) M(-1) s(-1) at 37 degrees C) is involved in the rate-determining step of the oligomerization reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi034642lDOI Listing

Publication Analysis

Top Keywords

subunit oligomerization
8
legume lectin
8
soybean agglutinin
8
kinetic analysis
4
analysis subunit
4
oligomerization legume
4
lectin soybean
4
agglutinin reconstitution
4
reconstitution soybean
4
agglutinin sba
4

Similar Publications

The bacterial transcription terminator Rho is a hexameric ATP-dependent RNA helicase that dislodges elongating RNA polymerases.  It has an N-terminal primary RNA binding site (PBS) on each subunit and a C-terminal secondary RNA binding site at the central channel. Here, we show that Rho also binds to linear longer double-stranded DNAs (dsDNA) and the circular plasmids non-specifically using its PBS.

View Article and Find Full Text PDF

Cytokines are small proteins that are critical for controlling the growth and activity of hematopoietic cells by binding to cell surface receptors and transmitting signals across membranes. The β common (βc) cytokine receptor family, consisting of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 cytokine receptors, is an architype of the heterodimeric cytokine receptor systems. We now know that signaling by cytokine receptors is not always an "all or none" phenomenon.

View Article and Find Full Text PDF

Differences in structure, dynamics and Zn-coordination between isoforms of human ubiquitin ligase UBE3A.

J Biol Chem

December 2024

Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA. Electronic address:

Article Synopsis
  • UBE3A/E6AP expression abnormalities are linked to neurological disorders like Angelman syndrome and autism, with three protein isoforms existing that have unique functions and cellular roles.
  • Research shows the isoforms differ structurally, particularly in their N-terminal regions, affecting their ability to bind to the proteasome and multimerize, which is crucial for their proper activation.
  • Advanced techniques, including NMR spectroscopy, reveal that some isoforms have dynamic features that could influence their response to oxidative stress, enhancing the understanding of UBE3A's functions and potential therapeutic targets for related disorders.
View Article and Find Full Text PDF

Introduction: The Structural Basis of Virus Function.

Subcell Biochem

December 2024

Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.

Viruses may be regarded as dynamic nucleoprotein assemblies capable of assisted multiplication within cells, and of propagation between cells and organisms. Infectious virus particles (virions) assembled in a host cell are dynamic, generally metastable particles: They are robust enough to protect the viral genome outside the cell but are also poised to undergo structural changes and execute mechanochemical actions required for infection of other cells. This chapter provides a broad introduction to the structural and physical biology of viruses and is intended mainly for virology students.

View Article and Find Full Text PDF

Mitochondrial dysfunction and α-synuclein (αSyn) aggregation are key contributors to Parkinson's Disease (PD). While genetic and environmental risk factors, including mutations in mitochondrial-associated genes, are implicated in PD, the precise mechanisms linking mitochondrial defects to αSyn pathology remain incompletely understood, hindering the development of effective therapeutic interventions. Here, we identify the loss of branched chain ketoacid dehydrogenase kinase (BCKDK) as a mitochondrial risk factor that exacerbates αSyn pathology by disrupting Complex I function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!