(+/-)-4-Methylthioamphetamine (MTA) was resolved into its enantiomers, and a series of N-alkyl derivatives of the parent compound, as well as its alpha-ethyl analogue, were prepared. The monoamine oxidase (MAO) inhibitory properties of these substances were evaluated in vitro, using a crude rat brain mitochondrial suspension as the source of enzyme. All compounds produced a selective, reversible and concentration-related inhibition of MAO-A. (+)-MTA proved to be the most potent inhibitor studied, while all the other derivatives were less active than the parent compound, with (-)-MTA being about 18 times less potent than the (+) isomer. The analysis of structure-activity relationships indicates that the introduction of alkyl substituents on the amino group of MTA leads to a reduction in the potency of the derivatives as MAO-A inhibitors, an effect which increases with the size of the substituent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1475636031000118437 | DOI Listing |
Biomedicines
November 2024
Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Jalisco, Mexico.
Pharmacotherapy for depression includes drugs such as monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), noradrenaline (NA) and serotonin (5-HT) reuptake inhibitors (NaSSAs), and atypical antidepressants; these drugs exert differentially beneficial effects on symptoms of depression after acute and chronic treatment in animal models. Said effects are established through neuroplastic mechanisms involving changes in neurogenesis and synaptogenesis as result of the activation of intracellular signaling pathways associated with neurochemical and behavioral changes. Antidepressants increase the synaptic availability of monoamines (monoaminergic hypothesis) such as 5-HT, NA, and gamma-aminobutyric acid (GABA) by inhibiting their reuptake or degradation and activating intracellular signaling pathways such as the responsive element binding protein (cAMP-CREB) cascade, which regulates the expression of genes related to neuroplasticity and neurogenesis, such as brain-derived neurotrophic factor (BDNF), in various brain structures implicated in depression.
View Article and Find Full Text PDFPrev Nutr Food Sci
December 2024
Food Science R&D Center, Kolmar BNH, Seoul 06800, Korea.
Ashwagandha () is a popular herb in Ayurveda, the traditional medicine system in India. It is known to exert stress-mitigating properties and has been extensively studied for its safety and efficacy in various disorders. This study assessed the effects of Ashwagandha root extract (ARE) on stress in rats.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus 22060 Pakistan +92334517999 +923005316570.
It is believed that inflammation influences several physiological processes, including the function of the central nervous system. Moreover, the impairment of lipid mechanisms/pathways is associated with neurodegenerative disorders and onset of Alzheimer's disease (AD). AD is a chronic neurodegenerative disease representing the major cause of dementia worldwide.
View Article and Find Full Text PDFCNS Spectr
January 2025
Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
Curr Cancer Drug Targets
January 2025
Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, 700114, India.
Immune checkpoint blockade (ICB) has fundamentally transformed cancer treat-ment by unlocking the potency of CD8+ T cells by targeting the suppression of the CTLA-4 and PD-1/PD-L1 pathways. Nevertheless, ICBs are associated with the risk of severe side effects and resistance in certain patients, driving the search for novel and safer immune check-point modulators. Monoamine Oxidase A (MAO-A) plays an unexpected role in the field of cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!