Laser-ablated U atoms co-deposited with CO in excess neon produce the novel CUO molecule, which forms distinct Ng complexes (Ng=Ar, Kr, Xe) with the heavier noble gases. The CUO(Ng) complexes are identified through CO isotopic and Ng reagent substitution and comparison to results of DFT frequency calculations. The U[bond]C and U[bond]O stretching frequencies of CUO(Ng) complexes are slightly red-shifted from neon matrix (1)Sigma(+) CUO values, which indicates a (1)A' ground state for the CUO(Ng) complexes. The CUO(Ng)(2) complexes in excess neon are likewise singlet molecules. However, the CUO(Ng)(3) and CUO(Ng)(4) complexes exhibit very different stretching frequencies and isotopic behaviors that are similar to those of CUO(Ar)(n) in a pure argon matrix, which has a (3)A" ground state based on DFT vibrational frequency calculations. This work suggests a coordination sphere model in which CUO in solid neon is initially solvated by four or more Ne atoms. Up to four heavier Ng atoms successively displace the Ne atoms leading ultimately to CUO(Ng)(4) complexes. The major changes in the CUO stretching frequencies from CUO(Ng)(2) to CUO(Ng)(3) provides evidence for the crossover from a singlet ground state to a triplet ground state.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200304946DOI Listing

Publication Analysis

Top Keywords

ground state
16
cuong complexes
12
stretching frequencies
12
cuo solid
8
solid neon
8
complexes
8
excess neon
8
frequency calculations
8
cuong4 complexes
8
atoms
5

Similar Publications

Pluripotent Stem Cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, while different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here we investigated how the actin cytoskeleton is regulated in different pluripotency states.

View Article and Find Full Text PDF

Altermagnets, characterized by spontaneous spin-splitting without net magnetization, are challenging to realize due to their unique spin group symmetries. Two-dimensional (2D) magnetic metal-organic frameworks (MOFs), with tunable topologies and spins, offer promising platforms for achieving altermagnetism. In this study, we propose a general strategy to create 2D altermagnetic monolayers by bridging Cr with organic ligands exhibiting nonbonding molecular orbitals (NBMOs) based on the Hückel molecular orbital theory and first-principles calculations.

View Article and Find Full Text PDF

Household electrification is an important pillar of decarbonization in the US and requires the rapid adoption of electric heat pumps. Household energy models that project adoption rates do not represent these decisions well. To what extent are they limited by fundamental knowledge gaps, or is there scope to incorporate insights from the social science literature? We review the energy modeling and social science literature on heating equipment adoption to synthesize our understanding of adoption decisions, to identify best practices on representing decision-making behavior among energy models, and to suggest model improvements.

View Article and Find Full Text PDF

The process of proton translocation in , triggered by light, is powered by the photoisomerization of all--retinal in bacteriorhodopsin (bR). The primary events in bR involving rapid structural changes upon light absorption occur within subpicoseconds to picoseconds. While the three-state model has received extensive support in describing the primary events between the H and K states, precise characterization of each excited state in the three-state model during photoisomerization remains elusive.

View Article and Find Full Text PDF

The quest for color-pure emitters for multicolor bioimaging as well as for ultrahigh definition organic light-emitting diodes demands facile design concepts to avoid tedious synthetic or computational trial-and-error procedures. We have recently presented a simple recipe to construct color-pure blue emitters, which combines basic resonance structure and frontier molecular orbital treatments; this recipe applies to multiresonant type emitters and allows to enlarge the chemical space toward novel structural motifs. In the current work, we show that such fundamental considerations further apply to the structurally entirely different family of xanthene dyes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!