Studies in developmental and cell biology have established the fact that responses of cells are influenced to a large degree by morphology and composition of the extracellular matrix. Goal of this work is to use this basic principle to improve the biological acceptance of implants by modifying the surfaces with components of the extracellular matrix (ECM). Aiming at load-bearing applications in bone contact, in this study the modification of titanium surfaces with the collagen types I and III in combination with fibronectin was undertaken; fibrillogenesis, fibril morphology and adsorption of type I, III and I/III-cofibrils onto titanium were assessed. Increasing the collagen type III amount resulted in a decrease of fibril diameter, while no significant changes in adsorption could be detected. The amount of fibronectin bound to the heterotypic fibrils depended on fibrillogenesis parameters such as ionic strength or concentration of phosphate, and varied with the percentage of integrated type III collagen.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.10080DOI Listing

Publication Analysis

Top Keywords

type iii
12
surfaces collagen
8
extracellular matrix
8
iii
5
modification ti6al4v
4
ti6al4v surfaces
4
collagen
4
collagen iii
4
iii fibronectin
4
fibronectin biochemical
4

Similar Publications

To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose.

View Article and Find Full Text PDF

CircZMYM2 Alleviates TGF-β1-Induced Proliferation, Migration and Activation of Fibroblasts via Targeting miR-199b-5p/KLF13 Axis.

Appl Biochem Biotechnol

January 2025

Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.

Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro.

View Article and Find Full Text PDF

A novel COL3A1 gene variant associated with sudden death due to spontaneous pneumothorax.

Forensic Sci Med Pathol

January 2025

Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

Spontaneous pneumothorax (SP) is a condition defined by abnormal gas accumulation in the chest cavity. Mutations of the collagen type III alpha 1 chain, COL3A1 gene, are primarily linked to vascular Ehlers-Danlos syndrome (vEDS); however, they can also contribute to structural changes in the tissue, like bullae of the lungs. In this case report, we present a young, thinly built boy who died due to a spontaneous pneumothorax.

View Article and Find Full Text PDF

The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization.

View Article and Find Full Text PDF

Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!