To understand the role of the cell cycle regulatory protein in the control of smooth muscle cell (SMC) proliferation, we tested the overexpression of p21Waf1, a cyclin-dependent kinase inhibitor, in human normal (MS9) and immortalized SMCs (ISS10) transfected with ori-minus simian virus 40 DNA, using an adenovirus-mediated system. In MS9, overexpression of p21Waf1 resulted in the inhibition of cell cycle progression at the G1/S boundary without apoptosis. On the other hand, in ISS10, overexpression of p21Waf1 induced marked apoptosis. In these cells, immunohistochemistry revealed that overexpressed p21Waf1 was localized in the nucleus. No differential expression pattern of either p53 or SV40T was observed in p21Waf1- and control gene (beta-galactosidase)-infected cells. Old-passaged ISS10 cells eventually showed growth arrest and a senescent-like phenotype. Immunohistochemistry revealed that p21Waf1 was localized in the cytoplasm of the early-passaged cells, but was found in the nucleus of the old-passaged cells. Our data suggested that nuclear accumulation of p21Waf1 plays a role in the cell death of immortalized SMC, which carries dysfunction of the cell cycle regulatory proteins such as p53. This culture model may be useful for studying the process of SMC proliferation, cell death, senescence, and cell cycle regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5551/jat.10.239 | DOI Listing |
J Appl Biomed
September 2024
Xiangyang Hospital of Traditional Chinese Medicine (Xiangyang Institute of Traditional Chinese Medicine), Department of Anesthesiology, Xiangyang 441000, China.
Cancer Drug Resist
April 2023
Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 15100, Iran.
Given the encouraging results of the p53-Mdm2 inhibitor RG7388 in clinical trials and the vital function of miR-16-5p in suppressing cell proliferation, the aim of the present study was to investigate the combined impact of RG7388 and miR-16-5p overexpression on the childhood acute lymphoblastic leukemia (chALL). miRTarBase and miRDB, along with KEGG and STRING databases, were used to predict miR-16-5p target genes and explore protein-protein interaction networks, respectively. B- and T-lymphoblastic cell lines, in addition to patient primary cells, were treated with RG7388.
View Article and Find Full Text PDFOxid Med Cell Longev
January 2023
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.
Endothelial cell (EC) senescence characterized by an irreversible growth arrest leading to endothelial dysfunction has been implicated in vascular aging and aging-associated cardiovascular diseases. Autophagy plays a crucial role in the modulation of cellular senescence. Our previous showed that myosin 1b (Myo1b), one family of nonfilamentous class-1 myosin, was reported to be involved in the modulation of human smooth muscle cell senescence.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
December 2022
Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ, USA; Radiobiology and Health Branch, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, Ontario, Canada. Electronic address:
BMC Cancer
February 2022
Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
Background: S100A1 expression is deregulated in a variety of human malignancies, but its role in normal and malignant endometrial cells is unclear.
Methods: We used endometrial carcinoma (Em Ca) cell lines to evaluate the physical and functional interaction of S100A1 with p53 and its negative regulator, mouse double minute 2 (MDM2). We also evaluated the expression of S100A1, p53, and MDM2 in clinical samples consisting of 89 normal endometrial and 189 Em Ca tissues.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!