Lipid-dependent bidirectional traffic of apolipoprotein B in polarized enterocytes.

Mol Biol Cell

Unité Mixte de Recherche, Institut National de la Santé et de la Recherche Médicale U505, Université Pierre et Marie Curie, Laboratoire de Pharmacologie Cellulaire et Moléculaire de l'EPHE, 75006 Paris, France.

Published: January 2004

Enterocytes are highly polarized cells that transfer nutrients across the intestinal epithelium from the apical to the basolateral pole. Apolipoprotein B (apoB) is a secretory protein that plays a key role in the transepithelial transport of dietary fatty acids as triacylglycerol. The evaluation of the control of apoB traffic by lipids is therefore of particular interest. To get a dynamic insight into this process, we used the enterocytic Caco-2 cells cultured on microporous filters, a system in which the apical and basal compartments can be delimited. Combining biochemical and morphological approaches, our results showed that, besides their role in protection from degradation, lipids control the intracellular traffic of apoB in enterocytes. A supply of fatty acids and cholesterol is sufficient for the export of apoB from the endoplasmic reticulum and its post-Golgi traffic up to the apical brush-border domain, where it remains until an apical supply of complex lipid micelles signals its chase down to the basolateral secretory domain. This downward traffic of apoB involves a microtubule-dependent process. Our results demonstrate an enterocyte-specific bidirectional process for the lipid-dependent traffic of a secretory protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC307534PMC
http://dx.doi.org/10.1091/mbc.e03-04-0215DOI Listing

Publication Analysis

Top Keywords

secretory protein
8
fatty acids
8
traffic apob
8
traffic
6
apob
5
lipid-dependent bidirectional
4
bidirectional traffic
4
traffic apolipoprotein
4
apolipoprotein polarized
4
polarized enterocytes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!