Regulator of chromosome condensation (RCC1) binding to chromatin is highly dynamic, as determined by fluorescence recovery after photobleaching analysis of GFP-RCC1 in stably transfected tsBN2 cells. Microinjection of wild-type or Q69L Ran markedly slowed the mobility of GFP-RCC1, whereas T24N Ran (defective in nucleotide loading) decreased it further still. We found significant alterations in the mobility of intranuclear GFP-RCC1 after treatment with agents that disrupt different Ran-dependent nuclear export pathways. Leptomycin B, which inhibits Crm1/RanGTP-dependent nuclear export, significantly increased the mobility of RCC1 as did high levels of actinomycin D (to inhibit RNA polymerases I, II, and III) or alpha-amanitin (to inhibit RNA polymerases II and III) as well as energy depletion. Inhibition of just mRNA transcription, however, had no affect on GFP-RCC1 mobility consistent with mRNA export being a Ran-independent process. In permeabilized cells, cytosol and GTP were required for the efficient release of GFP-RCC1 from chromatin. Recombinant Ran would not substitute for cytosol, and high levels of supplemental Ran inhibited the cytosol-stimulated release. Thus, RCC1 release from chromatin in vitro requires a factor(s) distinct from, or in addition to, Ran and seems linked in vivo to the availability of Ran-dependent transport cargo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC307544 | PMC |
http://dx.doi.org/10.1091/mbc.e03-06-0409 | DOI Listing |
Biochem Biophys Res Commun
November 2024
School of Life Science and Technology, ShanghaiTech University, Shanghai, China. Electronic address:
In mammalian cells, the Golgi apparatus undergoes fragmentation for its correct partition into two daughter cells during mitosis. Several Golgi structural proteins have been demonstrated to regulate Golgi disassembly/reassembly and spindle formation. However, it is largely unknown whether Golgi proteins mediate other major events in mitosis.
View Article and Find Full Text PDFThe Nuclear Pore Complex (NPC) facilitates rapid and selective nucleocytoplasmic transport of molecules as large as ribosomal subunits and viral capsids. It is not clear how key emergent properties of this transport arise from the system components and their interactions. To address this question, we constructed an integrative coarse-grained Brownian dynamics model of transport through a single NPC, followed by coupling it with a kinetic model of Ran-dependent transport in an entire cell.
View Article and Find Full Text PDFCells
January 2023
Biomedicine Discovery Institute, Monash University, Clayton 3168, Australia.
The cellular response to environmental stresses, such as heat and oxidative stress, is dependent on extensive trafficking of stress-signalling molecules between the cytoplasm and nucleus, which potentiates stress-activated signalling pathways, eventually resulting in cell repair or death. Although Ran-dependent nucleocytoplasmic transport mediated by members of the importin (IPO) super family of nuclear transporters is believed to be responsible for nearly all macromolecular transit between nucleus and cytoplasm, it is paradoxically known to be significantly impaired under conditions of stress. Importin 13 (IPO13) is a unique bidirectional transporter that binds to and releases cargo in a Ran-dependent manner, but in some cases, cargo release from IPO13 is affected by loading of another cargo.
View Article and Find Full Text PDFElife
October 2022
Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale School of Medicine, New Haven, United States.
Wnt signaling is essential for many aspects of embryonic development including the formation of the primary embryonic axis. In addition, excessive Wnt signaling drives multiple diseases including cancer, highlighting its importance for disease pathogenesis. β-catenin is a key effector in this pathway that translocates into the nucleus and activates Wnt responsive genes.
View Article and Find Full Text PDFFront Microbiol
July 2021
The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.
Epstein-Barr virus (EBV), the pathogen of several human malignancies, encodes many proteins required to be transported into the nucleus for viral DNA reproduction and nucleocapsids assembly in the lytic replication cycle. Here, fluorescence microscope, mutation analysis, interspecies heterokaryon assays, co-immunoprecipitation assay, RNA interference, and Western blot were performed to explore the nuclear import mechanism of EBV encoded BLLF2 protein. BLLF2 was shown to be a nucleocytoplasmic shuttling protein neither by a chromosomal region maintenance 1 (CRM1)- nor by a transporter associated with antigen processing (TAP)-dependent pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!