During the past two decades, a number of physical modalities have been approved for the management of nonunions and delayed unions. Implantable direct current stimulation is effective in managing established nonunions of the extremities and as an adjuvant in achieving spinal fusion. Pulsed electromagnetic fields and capacitive coupling induce fields through the soft tissue, resulting in low-magnitude voltage and currents at the fracture site. Pulsed electromagnetic fields may be as effective as surgery in managing extremity nonunions. Capacitive coupling appears to be effective both in extremity nonunions and lumbar fusions. Low-intensity ultrasound has been used to speed normal fracture healing and manage delayed unions. It has recently been approved for the management of nonunions. Despite the different mechanisms for stimulating bone healing, all signals result in increased intracellular calcium, thereby leading to bone formation.

Download full-text PDF

Source
http://dx.doi.org/10.5435/00124635-200309000-00007DOI Listing

Publication Analysis

Top Keywords

bone healing
8
approved management
8
management nonunions
8
delayed unions
8
pulsed electromagnetic
8
electromagnetic fields
8
capacitive coupling
8
extremity nonunions
8
nonunions
5
physical forces
4

Similar Publications

Influence of the wet-ear state on the outcomes of tympanic membrane repair under ear endoscopy: a prospective case-control study.

BMC Surg

January 2025

Department of Otolaryngology-Head and Neck Surgery, Zhangqiu People's Hospital, No.1920 Mingshui Huiquan Road, Zhangqiu Distict, Jinan, 250200, People's Republic of China.

Background: To prospectively determine whether tympanoplasty for tympanic membrane perforation (TMP) in wet ears impacts recovery.

Methods: We prospectively enrolled 32 TMP patients (2021-2023) and divided them into the wet-ear (14 patients) and dry-ear groups (18 patients), according to the presence of middle-ear secretions/edema. All patients underwent high-resolution thin-slice computed tomography, ear endoscopy, and pure tone audiometry.

View Article and Find Full Text PDF

Background: Despite advancements in prosthetic designs and surgical techniques, patellar dislocation remains a rare but significant complication following total knee arthroplasty, with an incidence ranging between 0.15% and 0.5%.

View Article and Find Full Text PDF

How do lesions affect limb lengthening in children with Ollier's disease?

BMC Musculoskelet Disord

January 2025

Department of Pediatric Orthopaedics, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Rd, Minhang District, Shanghai, 201102, China.

Purpose: Ollier's disease (multiple enchondromatosis) can cause severe lower limb length discrepancy and deformity in children. Osteotomy and limb lengthening with external fixation can correct the lower extremity deformity. There may be lesions in the osteotomy part (OP), and the internal fixation part of the external fixation(FP).

View Article and Find Full Text PDF

Novel transfer learning based bone fracture detection using radiographic images.

BMC Med Imaging

January 2025

Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.

A bone fracture is a medical condition characterized by a partial or complete break in the continuity of the bone. Fractures are primarily caused by injuries and accidents, affecting millions of people worldwide. The healing process for a fracture can take anywhere from one month to one year, leading to significant economic and psychological challenges for patients.

View Article and Find Full Text PDF

Recent progress in biopolymer-based electrospun nanofibers and their potential biomedical applications: A review.

Int J Biol Macromol

January 2025

School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea. Electronic address:

Tissue engineering offers an alternative approach to developing biological substitutes that restore, maintain, or enhance tissue functionality by integrating principles from medicine, biology, and engineering. In this context, biopolymer-based electrospun nanofibers have emerged as attractive platforms due to their superior physicochemical properties, including excellent biocompatibility, non-toxicity, and desirable biodegradability, compared to synthetic polymers. Considerable efforts have been dedicated to developing suitable substitutes for various biomedical applications, with electrospinning receiving considerable attention as a versatile technique for fabricating nanofibrous platforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!