We report here the synthesis and binding properties of oligonucleotides involving a perylene unit linked to the anomeric position of a 2'-deoxyribose residue. Both anomers were separated and incorporated separately at either the 5'-end or the internal position of a pyrimidine sequence. In any case the presence of the perylene unit stabilizes the complexes formed with either the single or the double-stranded target.

Download full-text PDF

Source
http://dx.doi.org/10.1081/NCN-120022841DOI Listing

Publication Analysis

Top Keywords

perylene unit
12
properties oligonucleotides
8
oligonucleotides involving
8
involving perylene
8
unit linked
8
2'-deoxyribose residue
8
synthesis properties
4
linked 2'-deoxyribose
4
residue report
4
report synthesis
4

Similar Publications

We incorporated Espaloma forcefield parameterization into MoSDeF tools for performing molecular dynamics simulations of organic molecules with HOOMD-Blue. We compared equilibrium morphologies predicted for perylene and poly-3-hexylthiophene (P3HT) with the ESP-UA forcefield in the present work against prior work using the OPLS-UA forcefield. We found that, after resolving the chemical ambiguities in molecular topologies, ESP-UA is similar to GAFF.

View Article and Find Full Text PDF

Efficient Photocatalytic Water Purification Through Novel Janus-Nanomicelles with Long-Lived Charge Separation Properties.

Small

January 2025

College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China.

Although the design of photocatalysts incorporating donor-acceptor units has garnered significant attention for its potential to enhance the efficiency of the photocatalysis process, the primary bottleneck lies in the challenge of generating long-lived charge separation states during exciton separation. Therefore, a novel Janus-nanomicelles photocatalyst is developed using carbazole (Cz) as the donor unit, perylene-3,4,9,10-tetracarboxydiimide (PDI) with long-excited state as the acceptor unit and polyethylene glycol (PEG) as the hydrophilic segment through ROMP polymerization. After optimizing the ratio, Cz-PDI-PEG rapidly adsorbs bisphenol A (BPA) within 10 s through π-π interaction, hydrogen-bonding interaction, and hydrophobic interaction between BPA and hydrophobic blocks when exposed to aqueous humor and efficiently photodegrades BPA (50 ppm) within 120 min for water purification purposes due to its long-lived charge separation state and achieving the highest reported efficiency so far.

View Article and Find Full Text PDF

Organic donor-acceptor (D-A) cocrystals are gaining attention for their potential applications in optoelectronic devices. This study explores the dynamics of charge transfer (CT) and triplet exciton formation in various D-A cocrystals. By examining a series of D-A cocrystals composed of coronene (COR), peri-xanthenoxanthene (PXX), and perylene (PER) donors paired with N,N-bis(3'-pentyl)perylene-3,4:9,10-bis(dicarboximide) (PDI), naphthalene-1,4:5,8-tetracarboxy-dianhydride (NDA), or pyrene-4,5,9,10-tetraone (PTO) acceptors, using transient absorption microscopy and time-resolved electron paramagnetic resonance spectroscopy, we find that the strength of the CT interaction influences the nature and yield of triplet excitons produced by CT state recombination.

View Article and Find Full Text PDF

We explored the electrochemical behavior of antimony-doped tin oxide (ATO) and perylene diimide (PDI)-sensitized ATO (ATO-PDI) for the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) mediated conversion of 5-hydroxymethyl furfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a value-added substrate for alternative polymer synthesis. We first showed that ATO displayed good electrocatalytic properties towards TEMPO, affording a quasi-reversible response with a heterogeneous rate constant on the order of 2×10 cm s. We then evaluated the performance of ATO under exhaustive electrolysis of HMF in basic aqueous electrolyte, reaching 80 % Faradaic Efficiency (FE) for FDCA production.

View Article and Find Full Text PDF
Article Synopsis
  • Two dyads were created using tetraarylpyrrolo[3,2-b]pyrrole (TAPP) as a blue energy donor and BODIPY, with different connection methods: direct in dyad 1 and through phenylethynyl linkers in dyad 2.
  • This is the first time TAPP has been reported as an energy donor in combination with BODIPY, showing over 99.9% quenching of TAPP fluorescence, indicating efficient energy transfer.
  • Energy transfer rates were measured at 125 femtoseconds for dyad 1 and 480 femtoseconds for dyad 2, with theoretical models helping to explain the differences in their performance, suggesting potential for
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!