Development of a nucleoside analog UV light sensor.

Nucleosides Nucleotides Nucleic Acids

Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907-1333, USA.

Published: December 2003

Conjugation of the photosensitive nucleoside (E)-5-(2-methoxycarbonylethenyl)cytidine to biotin provided a means to attach this analogue to microparticles for dosimetry applications that require UV sensor mobility.

Download full-text PDF

Source
http://dx.doi.org/10.1081/NCN-120022614DOI Listing

Publication Analysis

Top Keywords

development nucleoside
4
nucleoside analog
4
analog light
4
light sensor
4
sensor conjugation
4
conjugation photosensitive
4
photosensitive nucleoside
4
nucleoside e-5-2-methoxycarbonylethenylcytidine
4
e-5-2-methoxycarbonylethenylcytidine biotin
4
biotin provided
4

Similar Publications

Adenosine-to-inosine (A-to-I) editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a prevalent post-transcriptional modification that is vital for numerous biological functions. Given that this modification impacts global gene expression, RNA localization, and innate cellular immunity, dysregulation of A-to-I editing has unsurprisingly been linked to a variety of cancers and other diseases. However, our current understanding of the underpinning mechanisms that connect dysregulated A-to-I editing and disease processes remains limited.

View Article and Find Full Text PDF

Aptazyme-directed A-to-I RNA editing.

Methods Enzymol

January 2025

Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, P.R. China. Electronic address:

As a promising therapeutic approach, the RNA editing process can correct pathogenic mutations and is reversible and tunable, without permanently altering the genome. RNA editing mediated by human ADAR proteins offers unique advantages, including high specificity and low immunogenicity. Compared to CRISPR-based gene editing techniques, RNA editing events are temporary, which can reduce the risk of long-term unintended side effects, making off-target edits less concerning than DNA-targeting methods.

View Article and Find Full Text PDF

Nanopore sequencing to detect A-to-I editing sites.

Methods Enzymol

January 2025

School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore. Electronic address:

Adenosine-to-inosine (A-to-I) RNA editing, mediated by the ADAR family of enzymes, is pervasive in metazoans and functions as an important mechanism to diversify the proteome and control gene expression. Over the years, there have been multiple efforts to comprehensively map the editing landscape in different organisms and in different disease states. As inosine (I) is recognized largely as guanosine (G) by cellular machineries including the reverse transcriptase, editing sites can be detected as A-to-G changes during sequencing of complementary DNA (cDNA).

View Article and Find Full Text PDF

Background And Aims: Hepatitis B virus (HBV) is prevalent worldwide and is difficult to eradicate. Current treatment strategies for chronic hepatitis B ultimately seek to achieve functional cure (FC); however, the factors contributing to FC remain unclear. We aimed to investigate the gut microbiota profiles of patients with chronic hepatitis B who achieved FC.

View Article and Find Full Text PDF

Identification and Validation of a m6A-Related Long Noncoding RNA Prognostic Model in Colorectal Cancer.

J Cell Mol Med

January 2025

Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.

Accumulating research indicates that N6-methyladenosine (m6A) modification plays a pivotal role in colorectal cancer (CRC). Hence, investigating the m6A-related long noncoding RNAs (lncRNAs) significantly improves therapeutic strategies and prognostic assessments. This study aimed to develop and validate a prognostic model based on m6A-related lncRNAs to improve the prediction of clinical outcomes and identify potential immunological mechanisms in CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!