Human telomerase is a reverse transcriptase that is expressed in essentially all cancer cells, but not in the vast majority of normal somatic cells. Therefore, the specific inhibition of telomerase activity in tumors might have significant beneficial therapeutic effects. We have designed and evaluated oligonucleotide N3' --> P5' thio-phosphoramidates as telomerase template antagonists. In biochemical cell-free assays 11-13-mer thio-phosphoramidate oligonucleotides demonstrated sequence specific and dose dependent inhibition of telomerase with pico-molar IC50 values. Optimization of the oligonucleotide sequence and length resulted in the identification of a 13-mer-oligonucleotide thio-phosphoramidate GRN163 as a drug development candidate. In cell cultures GRN163 was able to inhibit telomerase activity in the absence of cationic lipid with approximately 1 microM IC50 values. Telomerase inhibition by GRN163 produced gradual telomere shortening, followed by cellular senescence and/or apoptosis of cancer derived cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.1081/NCN-120021958DOI Listing

Publication Analysis

Top Keywords

oligonucleotide n3'
8
n3' -->
8
--> p5'
8
telomerase template
8
template antagonists
8
inhibition telomerase
8
telomerase activity
8
ic50 values
8
telomerase
7
p5' thio-phosphoramidate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!