Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s005400070027 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Harbin Institute of Technology, School of Chemistry and Chemical Engineering, No. 92, West Dazhi Street, 150001, Harbin, CHINA.
Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Physics, University of Toronto, Toronto, Ontario, Canada.
Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.
View Article and Find Full Text PDFJ Geriatr Phys Ther
January 2025
VA Eastern Colorado Geriatric Research Education and Clinical Center (GRECC), VA Eastern Colorado Health Care System, Aurora, Colorado.
Background: In skilled nursing facilities (SNFs), i-STRONGER is a novel, high-intensity resistance training approach that incorporates progressive resistance training to promote greater improvements in patient function compared to usual care. To inform large-scale expansion of i-STRONGER as standard-of-care in SNFs, this mixed-methods study assessed rehabilitation providers' perceptions of i-STRONGER and purported needs for its adoption.
Methods: Forty-three rehabilitation providers participated in an 18-week, interactive i-STRONGER training program.
Infect Drug Resist
January 2025
Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.
Background: Rapid and accurate identification of causative organisms and prompt initiation of pathogen-targeted antibiotics are crucial for managing atypical pneumonia. The widespread application of targeted next-generation sequencing (t-NGS) in clinical practice demonstrates significant targeted advantages in rapid and accurate aetiological identification and antimicrobial resistance genes detection, particularly for difficult-to-culture, rare, or unexpected pathogens. An alarming surge of acquired macrolide resistance (MR) in (MP) presents a substantial challenge for the clinical selection of pathogen-targeted antibiotics worldwide, especially for fluoroquinolone-restricted pediatric patients with limited options available.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.
Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!