Development of the liver in the chicken embryo. I. Hepatic cords and sinusoids.

Anat Rec

Department of Biological Sciences, University of Calgary, Alberta, Canada.

Published: December 1992

Hemopoiesis in the liver of the chicken embryo begins on day 7 of incubation (Hamburger and Hamilton Stage 30) and peaks on day 14 (Stage 40). During this time frame, the differentiation of hepatic cells was examined by light microscopy, transmission and scanning electron microscopy, and morphometry. The avian liver is a closely packed mass of dendriform cords and discontinuous sinusoids. Hepatocytes are pyramidal in shape, and they ring the bile canaliculi which run through the centers of the cords. Semithin sections, made possible by infiltration and embedding in glycol methacrylate, were stained with hematoxylin and eosin to assess the general architecture of the organ and the lipid content of the hepatocytes and by the periodic acid-Schiff reaction and hematoxylin to visualize the cytoplasmic stores of glycogen. The number of hepatocytes with demonstrable glycogen fluctuates erratically in early hemopoiesis, and the proportion of glycogen-containing cells progressively increases as hemopoiesis climbs to a peak. Most differentiating hepatocytes are devoid of lipid droplets until Stages 39 and 40. From Stage 30 to 35, hepatocyte volume falls to its lowest value. Subsequently (Stages 36 to 40), cell volume increases and hepatocytes achieve a relatively uniform size. Ultrastructural changes in the differentiating hepatocytes, including alterations to the mitochondria, endoplasmic reticulum, and Golgi apparatus, are documented. These morphological and morphometric findings on the prehepatocyte population and hepatic vasculature cover 2 of the 3 elements deemed critical to hepatic hemopoiesis in many vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.1092340411DOI Listing

Publication Analysis

Top Keywords

liver chicken
8
chicken embryo
8
differentiating hepatocytes
8
hepatocytes
6
development liver
4
hepatic
4
embryo hepatic
4
hepatic cords
4
cords sinusoids
4
hemopoiesis
4

Similar Publications

Avian haemosporidian parasites affecting non-descript village chickens in Africa.

Trop Anim Health Prod

January 2025

Department of Agriculture and Animal Health, College of Agriculture and Environmental Science, University of South Africa, Florida, South Africa.

Smallholder farmers in most of the rural areas in African countries rear non-descript village chickens for petty cash, food provision and for performing rituals. Village chicken production systems are regarded as low input- low output because the chickens receive minimum care and produce average to less eggs and meat. The chickens receive minimal biosecurity and are often left to scavenge for feed and thus exposes them to potential vector parasites that can transmit parasites such as haemoparasites.

View Article and Find Full Text PDF

Background And Aim: Fowl adenovirus (FAdV) is the etiological agent of inclusion body hepatitis (IBH) and hepatitis-hydropericardium syndrome (HHS) in poultry. It is also detected in chickens with runting and stunting syndrome (RSS). FAdV has been detected worldwide, and genotypes 8a, 8b, and 11 have been identified in chickens with enteric problems in Brazil.

View Article and Find Full Text PDF

Modulatory effect of Echium plantagineum oil on the n-3 LC-PUFA biosynthetic capacity of chicken (Gallus gallus).

Poult Sci

January 2025

Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna. Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain.

Poultry can be a sustainable source of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) through the bioconversion of dietary alpha-linolenic acid (ALA, 18:3n-3). However, this process is currently limited by the high n-6/n-3 ratio in poultry diets affecting the competition between n-6 and n-3 fatty acids (FA) for the same biosynthetic enzymes, and the rate-limiting Δ6 desaturase which act at both, the first and final steps of DHA synthesis pathway. Echium plantagineum oil (EO) is an unusual source of stearidonic acid (SDA, 18:4n-3) which bypasses the first Δ6 desaturase step potentially increasing n-3 long-chain polyunsaturated fatty acids (LC-PUFA) synthesis.

View Article and Find Full Text PDF

Effectiveness of newly isolated bacteriophages targeting multidrug-resistant Extraintestinal Pathogenic Escherichia coli strain (TZ1_3) in food preservation and mice health modulation.

Food Chem

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China. Electronic address:

Bacteriophages are promising alternatives for combating multidrug-resistant bacterial infections. Two lytic bacteriophages, named P1 and P3, targeting pathogenic Escherichia coli (ExPEC; strain TZ1_3) were isolated and evaluated for their potential ability to control pathogenic numbers either in ExPEC-contaminated food or ExPEC-infected mice. Results showed that phages significantly reduced ExPEC numbers within 6 and 12 h in contaminated water, milk, beef, and chicken when applied at 10 plaque-forming units (PFU).

View Article and Find Full Text PDF

An experiment was conducted to assess the effects of the BCAA and their interactions on performance, carcass composition, lipid metabolism, liver health, and intestinal morphometry in broiler chickens. Male chickens ( = 1080) were randomly assigned into floor pens in a 3 × 3 factorial design with 3 dietary ratios of SID Leu:Lys (110, 150, and 190%), and 3 dietary ratios of SID Ile-Val:Lys (68-77, 78-87, and 88-97%). Performance parameters were assessed from 1 to 35 days of age.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!