Dehalorespiration with hexachlorobenzene and pentachlorobenzene by Dehalococcoides sp. strain CBDB1.

Arch Microbiol

Fachgebiet Technische Biochemie, Institut für Biotechnologie, Technische Universität Berlin, Seestrasse 13, Sekr. GG1, 13353 Berlin, Germany.

Published: December 2003

The chlororespiring anaerobe Dehalococcoides sp. strain CBDB1 used hexachlorobenzene and pentachlorobenzene as electron acceptors in an energy-conserving process with hydrogen as electron donor. Previous attempts to grow Dehalococcoides sp. strain CBDB1 with hexachlorobenzene or pentachlorobenzene as electron acceptors failed if these compounds were provided as solutions in hexadecane. However, Dehalococcoides sp. strain CBDB1 was able to grow with hexachlorobenzene or pentachlorobenzene when added in crystalline form directly to cultures. Growth of Dehalococcoides sp. strain CBDB1 by dehalorespiration resulted in a growth yield ( Y) of 2.1+/-0.24 g protein/mol Cl(-) released with hexachlorobenzene as electron acceptor; with pentachlorobenzene, the growth yield was 2.9+/-0.15 g/mol Cl(-). Hexachlorobenzene was reductively dechlorinated to pentachlorobenzene, which was converted to a mixture of 1,2,3,5- and 1,2,4,5-tetrachlorobenzene. Formation of 1,2,3,4-tetrachlorobenzene was not detected. The final end-products of hexachlorobenzene and pentachlorobenzene dechlorination were 1,3,5-trichlorobenzene, 1,3- and 1,4-dichlorobenzene, which were formed in a ratio of about 3:2:5. As reported previously, Dehalococcoides sp. strain CBDB1 converted 1,2,3,5-tetrachlorobenzene exclusively to 1,3,5-trichlorobenzene, and 1,2,4,5-tetrachlorobenzene exclusively to 1,2,4-trichlorobenzene. The organism therefore catalyzes two different pathways to dechlorinate highly chlorinated benzenes. In the route leading to 1,3,5-trichlorobenzene, only doubly flanked chlorine substituents were removed, while in the route leading to 1,3-and 1,4-dichlorobenzene via 1,2,4-trichlorobenzene singly flanked chlorine substituents were also removed. Reductive dehalogenase activity measurements using whole cells pregrown with different chlorobenzene congeners as electron acceptors indicated that different reductive dehalogenases might be induced by the different electron acceptors. To our knowledge, this is the first report describing reductive dechlorination of hexachlorobenzene and pentachlorobenzene via dehalorespiration by a pure bacterial culture.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-003-0607-7DOI Listing

Publication Analysis

Top Keywords

hexachlorobenzene pentachlorobenzene
24
dehalococcoides strain
24
strain cbdb1
24
electron acceptors
16
pentachlorobenzene
8
cbdb1 hexachlorobenzene
8
pentachlorobenzene electron
8
growth yield
8
route leading
8
flanked chlorine
8

Similar Publications

Chlorinated benzenes (CBzs) are a group of organic pollutants, which have been industrially or unintentionally produced through various chemical and thermal processes. Studies on full congener profiles of CBzs in waste and environmental samples are relatively limited and not updated. In the present study, concentrations of 12 CBzs were determined in fly ash (FA) and bottom ash (BA) samples collected from one municipal waste incinerator (MWI) and one industrial waste incinerator (IWI) in northern Vietnam.

View Article and Find Full Text PDF

Cloud point extraction is an environmentally benign and simple separation/concentration procedure that can be regarded as an alternative to classical liquid-liquid extraction. In the current work, it was studied the compatibility of cloud point extraction followed by back-extraction in low volume of organic solvent with gas chromatography-mass spectrometry (GC-MS and GC-MS/MS). Triton X-100 was preferred than Triton X-114 as a surfactant to produce the clouding phenomenon and hexane or isooctane was found to be appropriate organic solvents which can be used at the back-extraction step.

View Article and Find Full Text PDF

New and legacy pesticidal persistent organic pollutants in the agricultural region of the Sultanate of Oman.

J Hazard Mater

October 2023

Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), SRM Institute of Science and Technology, Kattankulathur 603203, India. Electronic address:

Comprehensive air and surface soil monitoring was conducted for new and legacy organochlorine pesticides (OCPs) to fill the knowledge and data gap on the sources and fate of pesticidal persistent organic pollutants (POPs) in the Sultanate of Oman. DDTs in agricultural soil samples ranged from 0.013 to 95.

View Article and Find Full Text PDF

Polychlorinated biphenyls and organochlorine pesticides in surface sediments from river networks, South Korea: Spatial distribution, source identification, and ecological risks.

Environ Sci Pollut Res Int

September 2023

Institute for Environment and Energy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.

In this study, the nationwide monitoring of 65 polychlorinated biphenyls (PCBs) and 23 organochlorine pesticides (OCPs) in surface sediments was conducted at 77 sites in river networks in South Korea. The concentrations of ∑PCBs were relatively high in industrial sites (0.0297-138 ng/g dry weight (dw); mean 15.

View Article and Find Full Text PDF

Degradation behaviors and accumulative effects of coexisting chlorobenzene congeners on the dechlorination of hexachlorobenzene in soil by nanoscale zero-valent iron.

Environ Geochem Health

June 2023

Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China.

It is well known that many chlorinated organic pollutants can be dechlorinated by nanoscale zero-valent iron. However, in the real chlorinated organic compounds contaminated soil, the congeners of high- and low-chlorinated isomer often coexist and their dechlorination behaviors are poorly known, such as hexachlorobenzene (HCB). In this work, the degradation behaviors of three coexisting chlorobenzene congeners pentachlorobenzene (PeCB), 1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB) and 1,2,4-trichlorobenzene (1,2,4-TCB) and the influence of initial pH and reaction temperature on the dechlorination of HCB in HCB-contaminated soil by nanoscale zero-valent iron were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!