A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. | LitMetric

The thienopyridine derivatives ticlopidine and clopidogrel are inhibitors of ADP-induced platelet aggregation. Pharmacological activity of these prodrugs depends on cytochrome P450 (P450)-dependent oxidation to the active antithrombotic agent. In this study, we investigated the interaction potential of clopidogrel and ticlopidine by using human liver microsomes and recombinantly expressed P450 isoforms. Both clopidogrel and ticlopidine inhibited CYP2B6 with highest potency and CYP2C19 with lower potency. Clopidogrel also inhibited CYP2C9, and ticlopidine also inhibited CYP1A2, with lower potency. Inhibition of CYP2B6 was time- and concentration-dependent, and as shown by dialysis experiments, it was irreversible and dependent on NADPH, suggesting a mechanism-based mode of action. Inactivation was of nonpseudo-firstorder type with maximal rates of inactivation (K(inact)) for clopidogrel and ticlopidine in microsomes (recombinant CYP2B6) of 0.35 (1.5 min(-1)) and 0.5 min(-1) (0.8 min(-1)), respectively, and half-maximal inactivator concentrations (KI) were 0.5 microM (1.1 microM) for clopidogrel and 0.2 microM (0.8 microM) for ticlopidine. Inhibition was attenuated by the presence of alternative active site ligands but not by nucleophilic trapping agents or reactive oxygen scavengers, further supporting mechanism-based action. A chemical mechanism is discussed based on the known metabolic activation of clopidogrel and on the finding that hemoprotein integrity of recombinant CYP2B6 was not affected by irreversible inhibition. These results suggest the possibility of drug interactions between thienopyridine derivates and drug substrates of CYP2B6 and CYP2C19.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.103.056127DOI Listing

Publication Analysis

Top Keywords

clopidogrel ticlopidine
16
clopidogrel
8
ticlopidine inhibited
8
lower potency
8
recombinant cyp2b6
8
min-1 min-1
8
microm microm
8
ticlopidine
7
cyp2b6
6
potent mechanism-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!