Carbon monoxide (CO) is a gaseous vasodilator produced by many cell types, including endothelial and smooth muscle cells. The goal of the present study was to investigate signaling mechanisms responsible for CO activation of large-conductance Ca(2+)-activated K(+) (K(Ca)) channels in newborn porcine cerebral arteriole smooth muscle cells. In intact cells at 0 mV, CO (3 microM) or CO released from dimanganese decacarbonyl (10 microM), a novel light-activated CO donor, increased K(Ca) channel activity 4.9- or 3.5-fold, respectively. K(Ca) channel activation by CO was not blocked by 1-H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (25 microM), a soluble guanylyl cyclase inhibitor. In inside-out patches at 0 mV, CO shifted the Ca(2+) concentration-response curve for K(Ca) channels leftward and decreased the apparent dissociation constant for Ca(2+) from 31 to 24 microM. Western blotting data suggested that the low Ca(2+) sensitivity of newborn K(Ca) channels may be due to a reduced beta-subunit-to-alpha-subunit ratio. CO activation of K(Ca) channels was Ca(2+) dependent. CO increased open probability 3.7-fold with 10 microM free Ca(2+) at the cytosolic membrane surface but only 1.1-fold with 300 nM Ca(2+). CO left shifted the current-voltage relationship of cslo-alpha currents expressed in HEK-293 cells, increasing currents 2.2-fold at +50 mV. In summary, data suggest that in newborn arteriole smooth muscle cells, CO activates low-affinity K(Ca) channels via a direct effect on the alpha-subunit that increases apparent Ca(2+) sensitivity. The optimal tuning by CO of the micromolar Ca(2+) sensitivity of K(Ca) channels will lead to preferential activation by signaling modalities, such as Ca(2+) sparks, which elevate the subsarcolemmal Ca(2+) concentration within this range.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00782.2003DOI Listing

Publication Analysis

Top Keywords

kca channels
28
smooth muscle
16
muscle cells
16
ca2+ sensitivity
16
arteriole smooth
12
ca2+
11
kca
9
carbon monoxide
8
channels newborn
8
newborn arteriole
8

Similar Publications

Peptide Toxins from Marine Snails with Activity on Potassium Channels and/or Currents.

Toxins (Basel)

November 2024

Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico.

Toxins from snails are peptides characterized by a great structural and functional diversity. They have a high affinity for a wide range of membrane proteins such as ion channels, neurotransmitter transporters, and G protein-coupled receptors. Potassium ion channels are integral proteins of cell membranes that play vital roles in physiological processes in muscle and neuron cells, among others, and reports in the literature indicate that perturbation in their function (by mutations or ectopic expression) may result in the development and progression of different ailments in humans.

View Article and Find Full Text PDF

Potassium channels mediate nitric oxide-induced vasorelaxation in arteries supplying colon cancer.

Prostaglandins Other Lipid Mediat

December 2024

Department of Biology, College of Science, University of Zakho, Duhok, Kurdistan Region, Iraq; Department of Biology, College of Science, University of Nawroz, Duhok, Kurdistan Region, Iraq.

Introduction: Aberrant vascular function and cancer growth are closely related, with nitric oxide (NO) being a key factor in vascular tone regulation. This study provides Novel insights into the distinctive mechanisms underlying cancer-associated vascular dysfunction by investigating the involvement of potassium (K) channels in NO-mediated vasorelaxation within arteries supplying colon cancer.

Methods: Arterial segments from colon cancer patients were isolated and sectioned into rings, these rings were mounted in an organ bath filled with Krebs' solution and maintained at 37°C.

View Article and Find Full Text PDF

Neurons differentiate mechanical stimuli force and rate to elicit unique functional responses, driving the need for further tools to generate various mechanical stimuli. Here, cell-internal nanomagnetic forces (iNMF) are introduced by manipulating internalized magnetic nanoparticles with an external magnetic field across cortical neuron networks in vitro. Under iNMF, cortical neurons exhibit calcium (Ca) influx, leading to modulation of activity observed through Ca event rates.

View Article and Find Full Text PDF

Circuit function results from both intrinsic conductances of network neurons and the synaptic conductances that connect them. In models of neural circuits, different combinations of maximal conductances can give rise to similar activity. We compared the robustness of a neural circuit to changes in their intrinsic versus synaptic conductances.

View Article and Find Full Text PDF

Targeting endothelial K channels in vivo restores arterial and endothelial function in type 2 diabetic rats.

Metabolism

November 2024

Dept. of Physiology and Pharmacology, Cumming School of Medicine and Libin Cardiovascular Institute, University of Calgary, Canada. Electronic address:

Objective: This study tested the hypothesis that administration of the KCa channel activator SKA-31 restores endothelium-dependent vasodilation in vivo in Type 2 Diabetic (T2D) rats.

Background: Acute treatment of isolated resistance arteries from T2D rats and humans with SKA-31 significantly improved endothelium-dependent vasodilation. However, it is unknown whether these in situ actions translate to intact vascular beds in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!