Physarum polycephalum has a life cycle with several distinct phases that have different oxidation-reduction requirements. To investigate the relationship between the life cycle and the oxidation-reduction state, we isolated glutathione reductase (GR; EC 1.6.4.2) from Physarum microplasmodia. The enzyme was found to be a homodimer with a subunit M(r) of 49,000, and K(m) values for oxidized glutathione and NADPH of 40 and 28.6 microM, respectively. We then constructed a cDNA library from microplasmodium mRNA and cloned GR cDNA from the library. The isolated cDNA consisted of 1,475 bp encoding a polypeptide of 452 amino acids. The amino acid sequence similarity was about 50% with GRs of other organisms, and several conserved sequence motifs thought to be necessary for activity are evident in the Physarum enzyme. Escherichia coli transformed with an expression vector containing the cDNA synthesized the active GR. Genomic Southern blot analysis indicated that the GR gene is present as a single copy in the Physarum genome. Immunoblot analysis and RT-PCR analysis detected GR mRNA expression in the microplasmodium, plasmodium, and sclerotium, but not in the spore or flagellate. GR activity was low in the spore and flagellate. These results suggest that the glutathione oxidation-reduction system relates to the Physarum life cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1550-7408.2003.tb00142.xDOI Listing

Publication Analysis

Top Keywords

life cycle
12
glutathione reductase
8
physarum polycephalum
8
cdna library
8
spore flagellate
8
physarum
6
isolation characterization
4
glutathione
4
characterization glutathione
4
reductase physarum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!