Modeling of oxygen diffusion from the blood vessels to intracellular organelles.

Adv Exp Med Biol

Department of Biomedical Engineering, Center for Computational Medicine and Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Published: November 2003

We describe recent models of oxygen transport in tissue along the pathway from the hemoglobin molecule to the mitochondria and illustrate their applications. Microvasculature is the major site of exchange between blood and parenchymal cells for gases (O2, CO2, CO, NO), nutrients, metabolic products, and drugs. These exchange processes are affected by the architecture of the microvessels and the surrounding cells; distribution of blood flow; transport characteristics of blood, cells, and interstitial space; and rates of various chemical reactions associated with the transport processes. These processes operate at multiple levels of biological organization, from the molecular to the organ levels. Quantitative understanding of molecular transport in cells and tissues, specifically of oxygen transport, is the prerequisite for understanding the mechanisms of many diseases and for designing effective therapies. Mathematical and computational models provide a powerful set of tools for studies of these complex phenomena.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4615-0075-9_46DOI Listing

Publication Analysis

Top Keywords

oxygen transport
8
transport
5
modeling oxygen
4
oxygen diffusion
4
blood
4
diffusion blood
4
blood vessels
4
vessels intracellular
4
intracellular organelles
4
organelles describe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!