Currently, no on-line method of assessing cerebral oxygenation is sufficiently accurate to be clinically helpful. In an attempt to find a good predictor of postoperative cerebral outcome, we retrospectively studied the relationship between the redox behavior of cytochrome oxidase (cyt. ox.) during an operation and the neurological prognosis in 83 patients who underwent thoracic aortic surgery. Our data revealed three patterns of change in the redox behavior of cyt. ox. during the operation; the actual pattern exhibited by a given patient showed a highly significant correlation with the neurological prognosis (p < 0.0001). We conclude that the redox behavior of cyt. ox. during an operation is likely to be a good predictor of postoperative cerebral outcome, which implies that brain tissue oxygen sufficiency can be evaluated by near-infrared measurement of cytochrome oxidase (except for that in local regions far from the monitoring site).

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4615-0075-9_38DOI Listing

Publication Analysis

Top Keywords

redox behavior
16
cytochrome oxidase
12
neurological prognosis
12
cyt operation
12
relationship redox
8
good predictor
8
predictor postoperative
8
postoperative cerebral
8
cerebral outcome
8
behavior cyt
8

Similar Publications

A pronounced nucleophilicity in combination with a distinct redox non-innocence is a unique feature of a coordinated ligand, which in the current case, leads to unprecedented carbon-centered reactivity patterns: A carbodiphosphorane-based (CDP) pincer-type rhodium complex allows to cleave two C-Cl-bonds of geminal dichlorides via two consecutive SN2-type oxidative additions resulting in the formation of a stabilized carbene fragment. In the presence of a suitable reductant the carbene fragment can even be converted into olefines or hydrodehalogenation products in a catalytic reaction. The developed method can also be used to convert chlorofluorocarbons (CFCs) such as CH2ClF to fluoromethane and methane.

View Article and Find Full Text PDF

The abundance and behaviour of all hematopoietic components display daily oscillations, supporting the involvement of circadian clock mechanisms. The daily variations of immune cell functions, such as trafficking between blood and tissues, differentiation, proliferation, and effector capabilities are regulated by complex intrinsic (cell-based) and extrinsic (neuro-hormonal, organism-based) mechanisms. While the role of the transcriptional/translational molecular machinery, driven by a set of well-conserved genes (Clock genes), in nucleated immune cells is increasingly recognized and understood, the presence of non-transcriptional mechanisms remains almost entirely unexplored.

View Article and Find Full Text PDF

Toxicity of antimony in housefly after whole-life-cycle exposure: Changes in growth, development, redox homeostasis, mitochondrial function, and fecundity.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China. Electronic address:

The increasing utilization of antimony (Sb) in manufacturing industries has led to the emergence of Sb contamination in the environment as a significant public health concern. To elucidate the toxicity of Sb and its mechanism of action, this study aimed to investigate the adverse effects of Sb on a cosmopolitan insect, housefly (Musca domestica), under a whole life cycle (from embryonic to adult stage) exposure through the examination of a suite of parameters, including biological, physiological, behavioral, and molecular endpoints. A range of Sb concentrations, including moderate contamination (0.

View Article and Find Full Text PDF
Article Synopsis
  • Actinide elements like U, Np, and Pu often form actinyl ions (AnO) in their +V and +VI oxidation states, which are significant for understanding environmental behavior and nuclear processes.
  • Research on [AnO(saldien)] complexes shows that their molecular structures share similarities, with some variations caused by actinide contraction, while their redox potentials increase from U to Np and then decrease to Pu, indicating distinct electronic configurations.
  • The study's findings, supported by DFT-based calculations, enhance our understanding of actinide oxidation states, which is crucial for various applications, including nuclear fuel management and advancements in spintronics.
View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Saint James School of Medicine, Park Ridge, IL, USA.

Background: Oxidative stress is formed by a perturbation of redox homeostasis and linked to the development of Alzheimer's disease (AD) [1]. This imbalance results in an abundance of free radicals that exceeds the antioxidant capacity. Xanthine oxidase (XO) is an enzyme responsible for producing uric acid through the metabolism of purine nucleotides, specifically hypoxanthine and xanthine to uric acid [2].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!