Bonding of silicone extra-oral elastomers to acrylic resin: the effect of primer composition.

Eur J Prosthodont Restor Dent

Dept. of Removable Prosthodontics, University of Athens, Dental School, 2 Thivon Str., 115 27 Athens, Greece.

Published: September 2003

Silicone elastomer is bonded to acrylic resin in many facial or oro-facial prostheses. The silicone elastomer/acrylic resin bond has been reported to be insufficient and primers have been used to enhance the bond. This study investigated the bond strength of silicone elastomer to acrylic resin using different types of primers. The extra-oral silicone elastomers studied were Cosmesil and Ideal. The "overlap-joint" model was used to evaluate the bond strength and the samples were stretched until fracture. The bonding surfaces were treated with a primer. The control primer was Cosmesil and the others a mixture of Cosmesil/Z-6020 and Cosmesil/A-174 in 50/50 v/v ratio. The bond strength ranged from 0.026 MPa to 0.219 MPa. The results obtained in this work led to the conclusion that the most critical parameter allowing the efficient performance of a primer is the compatibility and affinity of its composition with the selected silicone elastomer.

Download full-text PDF

Source

Publication Analysis

Top Keywords

acrylic resin
12
silicone elastomer
12
bond strength
12
silicone
5
bond
5
bonding silicone
4
silicone extra-oral
4
extra-oral elastomers
4
elastomers acrylic
4
resin
4

Similar Publications

Mechanical properties of a polylactic 3D-printed interim crown after thermocycling.

PLoS One

January 2025

Department of Advanced General Dentistry, College of Dentistry, Yonsei University, Seoul, Korea.

Polylactic acid (PLA) has garnered attention for use in interim dental restorations due to its biocompatibility, biodegradability, low cost, ease of fabrication, and moderate strength. However, its performance under intraoral conditions, particularly under heat and moisture, remains underexplored. This study evaluated the mechanical properties of PLA interim crowns compared with those of polymethylmethacrylate (PMMA) and bisphenol crowns under simulated intraoral conditions with thermocycling.

View Article and Find Full Text PDF

The objective of this study is to fabricate and develop hydroxypropyl methylcellulose (HPMC) hydrogel (HG)-based composite bone cements with incorporation of hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and with/without polymethylmethacrylate (PMMA) for vertebroplasty. For animal study, twenty female Wister rats (250-300 g, 12 weeks of age) were divided into four groups including a two non-ovariectomy (NOVX) groups and two ovariectomy (OVX)-induced osteoporosis groups. Two prepared biocomposites including HG/β-TCP/HA and HG/β-TCP/HA/PMMA were injected into the tibial defects of both OVX and NOVX rats for evaluating in vivo osteogenesis after 12 weeks.

View Article and Find Full Text PDF

One of the most costly stages of activated sludge wastewater treatment plants is the treatment and dewatering of waste sludge. Chemical conditioning of sludge, as one of the most widespread methods to enhance sludge dewaterability, accounts for a significant portion of operational expenses due to the consumption of expensive polymeric compounds. This research aims to assess the cost-effectiveness of ochre soil, modified with hydrochloric acid, as an affordable mineral for conditioning waste sludge in an activated sludge system.

View Article and Find Full Text PDF

Introduction: Cymbopogon martini, Syzygium aromaticum, and Cupressus sempervirens are used for antimicrobial purposes in the worldwide. Both their extracts and essential oil contents are rich in active ingredients.

Objective: The aim of this study was to investigate the inhibitory effect of Cymbopogon martini essential oil (CMEO), Syzygium aromaticum essential oil (SAEO) and Cupressus sempervirens essential oil (CSEO) on Candida albicans biofilm formation on heat-polymerized polymethyl methacrylate (PMMA) samples in vitro and in silico.

View Article and Find Full Text PDF

The degree of cross-linking of polyacrylic acid affects the fibrogenicity in rat lungs.

Sci Rep

January 2025

Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.

Polyacrylic acid (PAA) with different concentrations of cross-linker was instilled into the trachea of rats to examine the effect of PAA crosslink density on lung disorders. Methods: F344 rats were intratracheally exposed to low and high doses of PAA with cross-linker concentrations of 0.1, 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!