Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/425680a | DOI Listing |
Comput Biol Med
January 2025
Khalifa University, Abu Dhabi, United Arab Emirates. Electronic address:
Musculoskeletal modeling based on inverse dynamics provides a cost-effective non-invasive means for calculating intersegmental joint reaction forces and moments, solely relying on kinematic data, easily obtained from smart wearables. On the other hand, the accuracy and precision of such models strongly hinge upon the selected scaling methodology tailored to subject-specific data. This study investigates the impact of upper body mass distribution on internal and external kinetics computed using a comprehensive musculoskeletal model during level walking in both normal weight and obese individuals.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing Tech University, College of Chemical Engineering, Nanjing, CHINA.
The wide application of zeolite Y in petrochemical industry is well known as one of the milestones in zeolite chemistry and heterogeneous catalysis. However, the traditional organic-free synthesis typically produces (hydro)thermally unstable zeolite Y with Si/Al atomic ratio (SAR) less than 2.5.
View Article and Find Full Text PDFRSC Adv
January 2025
National Centre of Excellence in Physical Chemistry, University of Peshawar Peshawar Pakistan.
In this study, a binary composite adsorbent based on activated carbon and phosphoric acid geopolymer foam (ACP) was prepared by combining phosphoric acid geopolymer (PAGP) with activated carbon (AC) and applied for the removal of methylene blue (MB). Activated carbon was thoroughly mixed with a mixture of fly ash and metakaolin in varying ratios, followed by phosphoric acid activation and thermal curing. The ACP adsorbent was characterized using scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, X-ray diffractometer (XRD), surface area analyser (SAP), and thermogravimetric analyser (TGA).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 China. Electronic address:
Lithium (Li) metal is considered to be one of the most promising anodes for next-generation high-energy-density batteries owing to its high theoretical capacity and low redox potential. However, the practical application of Li metal anodes has been hindered by the unstable interface and the growth of Li dendrites. Herein, a highly stable surface-patterned Li metal anode has been developed, in which composite nanowires composed of lithium phosphide and copper nanoparticles are riveted within the regular grooves of the Li metal surface.
View Article and Find Full Text PDFBackground: In proton radiotherapy, the steep dose deposition profile near the end of the proton's track, the Bragg peak, ensures a more conformed deposition of dose to the tumor region when compared with conventional radiotherapy while reducing the probability of normal tissue complications. However, uncertainties, as in the proton range, patient geometry, and positioning pose challenges to the precise and secure delivery of the treatment plan (TP). In vivo range determination and dose distribution are pivotal for mitigation of uncertainties, opening the possibility to reduce uncertainty margins and for adaptation of the TP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!