AI Article Synopsis

  • The RNA-binding protein HuR's expression and levels increase in colon cancer tissues compared to normal tissues.
  • Modulating HuR levels in colon cancer cells impacts gene expression and identifies beta-catenin mRNA as a new target of HuR.
  • Overexpression of HuR in cells leads to larger tumor growth in mice, while reducing HuR slows down tumor development, indicating its key role in colon cancer progression.

Article Abstract

Immunohistochemical analysis of paired tumor and normal tissue specimens revealed that the expression and cytoplasmic abundance of the RNA-binding protein HuR increased with malignancy, particularly in colon carcinomas. Interventions to modulate HuR expression in human RKO colon cancer cells altered gene expression profiles and identified beta-catenin mRNA as a novel HuR target. Subcutaneous injection of HuR-overexpressing RKO cells into nude mice produced significantly larger tumors than those arising from control populations; conversely, RKO cells expressing reduced HuR through small interference RNA- or antisense HuR-based approaches developed significantly more slowly. We propose that HuR-regulated target mRNA expression contributes to colon cancer growth. Our results suggest a pivotal function for HuR in colon carcinogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1206862DOI Listing

Publication Analysis

Top Keywords

rna-binding protein
8
protein hur
8
hur colon
8
colon carcinogenesis
8
colon cancer
8
rko cells
8
hur
6
colon
5
role rna-binding
4
carcinogenesis immunohistochemical
4

Similar Publications

Article Synopsis
  • RbpA is a critical protein for Mycobacterium tuberculosis growth, impacting transcription and antibiotic response, but its regulatory mechanisms are not fully understood.
  • Significant structural changes in RNA polymerase occur when it interacts with RbpA, revealing important amino acids for transcription regulation and dynamic behavior of the complex.
  • The study identifies potential ligands for RbpA's interaction site, laying the groundwork for future research on developing inhibitors that target RbpA's regulatory role in transcription.
View Article and Find Full Text PDF

Endometrial cancer (UCEC) is the most prevalent gynecological malignancy in high-income countries, and its incidence is rising globally. Although early-stage UCEC can be treated with surgery, advanced cases have a poor prognosis, highlighting the need for effective molecular biomarkers to improve diagnosis and prognosis. In this study, we analyzed mRNA and miRNA sequencing data from UCEC tissues and adjacent non-cancerous tissues from the TCGA database.

View Article and Find Full Text PDF

G3BP1 ribonucleoprotein complexes regulate focal adhesion protein mobility and cell migration.

Cell Rep

January 2025

Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA. Electronic address:

The subcellular localization of mRNAs plays a pivotal role in biological processes, including cell migration. For instance, β-actin mRNA and its associated RNA-binding protein (RBP), ZBP1/IGF2BP1, are recruited to focal adhesions (FAs) to support localized β-actin synthesis, crucial for cell migration. However, whether other mRNAs and RBPs also localize at FAs remains unclear.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are non-canonical secondary nucleic acid structures found in the transcriptome. They play crucial roles in gene regulation by interacting with G4-binding proteins (G4BPs) in cells. rG4-G4BP complexes have been associated with human diseases, making them important targets for drug development.

View Article and Find Full Text PDF

Purpose: This study aims to identify key genes that may be involved in the pathogenesis of gestational diabetes mellitus and to preliminarily elucidate the underlying mechanisms.

Methods: High-throughput transcriptome sequencing was employed to identify Differentially expressed genes (DEGs) in placental tissue samples of GDM and normal pregnant women. Functional and pathway analyses of these DEGs were conducted using bioinformatics databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!