The gradual disorganization of collagen fibers in the stromal connective tissue of the uterine cervix is characteristic of progressive cervical softening during pregnancy. A lack of thrombospondin (TSP) 2 has been shown to be associated with altered collagen fibril morphology of connective-tissue-rich organs such as skin and tendon. The goal of this study was to determine the role of TSP2 in cervical softening by studying a TSP2-null mouse line. Creep testing showed that, in the nonpregnant animal and on Day 10 of pregnancy, there was no difference between the cervical extensibility of the wild-type and the TSP2-deficient mice. However, by Day 14 of pregnancy, the TSP2-null mice showed 4.5-fold increase in cervical extensibility, and by Day 18, a 6.1-fold increase, when compared with wild-type mice. A further indicator of compromised cervical integrity was that, on Days 14 and 18 of pregnancy, the cervix of TSP2-null mice broke rapidly under standard loading conditions that did not break the cervix of wild-type mice. Western blotting showed that TSP2 was expressed in the cervix of mice on Days 14 and 18 of pregnancy but not on Day 10 or in the nonpregnant animal. As determined by immunohistochemistry, the amount of matrix metalloproteinase 2 (MMP2) in the cervix of TSP2-null mice increased 11-fold on Day 14 of pregnancy and 19-fold on Day 18. Thus, TSP2-null mice provide an animal model to assist in the understanding of the molecular basis of spontaneous, premature softening of the uterine cervix.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod.102.014704 | DOI Listing |
FASEB J
October 2024
Department of Pathology, Yale University, New Haven, Connecticut, USA.
Bone
December 2021
Department of Orthopaedic Surgery, University of Michigan School of Medicine, A. Alfred Taubman Biomedical Sciences Research Building, Room 2009, Ann Arbor, MI 48109, United States.
The trimeric thrombospondin homologs, TSP1 and TSP2, are both components of bone tissue and contribute in redundant and distinct ways to skeletal physiology. TSP1-null mice display increased femoral cross-sectional area and thickness due to periosteal expansion, as well as diminished matrix quality and impaired osteoclast function. TSP2-null mice display increased femoral cross-sectional thickness and reduced marrow area due to increased endosteal osteoblast activity, with very little periosteal expansion.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
July 2017
Department of Biomedical Engineering Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program Yale School of Medicine, New Haven, CT, United States.
Mice lacking thrombospondin-2 (TSP2) represent an animal model of impaired collagen fibrillogenesis. Collagen constitutes ~1/3 of the wall of the normal murine descending thoracic aorta (DTA) and is thought to confer mechanical strength at high pressures. Microstructural analysis of the DTA from TSP2-null mice revealed irregular and disorganized collagen fibrils in the adventitia and at the interface between the media and adventitia.
View Article and Find Full Text PDFBiochim Biophys Acta
August 2014
Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06520, USA. Electronic address:
Background: Numerous proteins and small leucine-rich proteoglycans (SLRPs) make up the composition of the extracellular matrix (ECM). Assembly of individual fibrillar components in the ECM, such as collagen, elastin, and fibronectin, is understood at the molecular level. In contrast, the incorporation of non-fibrillar components and their functions in the ECM are not fully understood.
View Article and Find Full Text PDFJ Orthop Res
October 2013
Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
It is often difficult to decouple the relative importance of different factors in regulating MSC differentiation. Genetically modified mice provide model systems whereby some variables can be manipulated while others are kept constant. Fracture repair in thrombospondin-2 (TSP2)-null mice is characterized by reduced endochondral ossification and enhanced intramembranous bone formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!