Profiling phenolic metabolites in transgenic alfalfa modified in lignin biosynthesis.

Phytochemistry

Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.

Published: November 2003

Soluble phenolics, wall-bound phenolics and soluble and core lignin were analyzed in transgenic alfalfa with genetically down-regulated O-methyltransferase genes involved in lignin biosynthesis. High performance liquid chromatography and principal component analysis were used to distinguish metabolic phenotypes of different transgenic alfalfa genotypes growing under standard greenhouse conditions. Principal component analysis of HPLC chromatograms did not resolve differences in leaf metabolite profiles between wild-type and transgenic plants of the same genetic background, although stem phenolic profiles were clearly different between wild-type and transgenic plants. However, the analytical methods clearly differentiated two non-transgenic alfalfa cultivars based on either leaf or stem profiles. Metabolic profiling provides a useful approach to monitoring the broader biochemical phenotypes of transgenic plants with altered expression of lignin pathway enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0031-9422(03)00463-1DOI Listing

Publication Analysis

Top Keywords

transgenic alfalfa
12
transgenic plants
12
lignin biosynthesis
8
principal component
8
component analysis
8
phenotypes transgenic
8
wild-type transgenic
8
transgenic
6
profiling phenolic
4
phenolic metabolites
4

Similar Publications

Under salt stress, plasma membrane proteins regulate ion homeostasis and the balance between reactive oxygen species (ROS). In this study, we investigated the functions of two small membrane proteins-MsRCI2B (tailless) and MsRCI2E (tailed)-encoded by the RCI2 (Rare Cold Inducible 2) gene family in Medicago sativa (alfalfa). We identified the distinct subcellular localization and expression patterns of these proteins under salt stress.

View Article and Find Full Text PDF

Genome-wide identification and characterization of alfalfa-specific genes in drought stress tolerance.

Plant Physiol Biochem

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Electronic address:

Alfalfa (Medicago sativa L.) is a prominent and distinct species within the pasture germplasm innovation industry. However, drought poses a substantial constraint on the yield and distribution of alfalfa by adversely affecting its growth.

View Article and Find Full Text PDF
Article Synopsis
  • All ten dehydrin genes identified in three Medicago species respond to various abiotic stresses, indicating their protective roles in plant stress tolerance.
  • CAS31, a specific dehydrin gene, enhances salt tolerance in transgenic plants by reducing the expression of HKT1, which is involved in sodium accumulation.
  • This study highlights the importance of dehydrin genes in understanding stress mechanisms in Medicago species and shows how genetic modifications can improve resilience to environmental challenges.
View Article and Find Full Text PDF

MsDUF3700 overexpression enhances aluminum tolerance in alfalfa shoots.

Plant Cell Rep

December 2024

College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.

Article Synopsis
  • * Researchers found that alfalfa plants with higher levels of MsDUF3700 were better at handling aluminum stress, affecting both root and shoot growth and altering antioxidant activity.
  • * The findings suggest that MsDUF3700 is important for regulating aluminum transport in the plant, enhancing its ability to cope with toxic aluminum levels in the soil.
View Article and Find Full Text PDF

Drought stress affects crop growth and development, significantly reducing crop yield and quality. Alfalfa ( L.), the most widely cultivated forage crop, is particularly susceptible to drought.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!